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ics becomes almost trivial when it is analyzed from the perspective of information pro-

duction. Whether its Jacobian matrix is specifiable or not, a Lyapunov spectrum can be 

constructed from which the potential Kolmogorov-Sinai or Shannon entropy can be as-

sessed. However, a self-organized equilibrium must first obtain, and for that a suitable 

policy must be operational.  
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1. Introduction 

       

Market economies are often blamed for their bad outcomes such as thermodynamic entropy production, 

and unequal distribution of income or wealth which, in turn, is a source of conflicts. There is now sufficient evi-

dence to argue factually that when market economies are unregulated or simply mildly regulated, they tend to 

become unstable, voracious, and predatory. For the proponents of unregulated markets, on the other hand, market 

economies are only sources of wealth creation.  

In truth, modern market economies should be viewed as complex social constructs designed to facilitate 

exchanges, in which decisions regarding investment, production, and distribution are driven by supply and de-

mand. Neoclassical economists model them as micro-founded-dynamic-stochastic-general-equilibrium constructs 

(DSGE) based on rational expectations, Walrasian market clearing, unique and stable equilibrium. Agents are 

infinitely-lived optimizing households with homothetic and identical preferences bent on maximizing outcomes. 
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Despite the persistent reminders from people such as Dani Rodrick and Paul Krugman (Rosenberg, 2016), DSGE 

(the latest vintage of macro-models) is a poor guide to decision-making. If the modeling effort of the International 

Monetary Fund or Federal Reserve Bank of New York is an indication of DSGE’s ability to explain and predict, 

one must conclude that it cannot fulfill these promises. For, in the absence of shocks and changes in model’s 

structure, one could perhaps predict next year’s outcome more accurately using a ruler. The reason is that market 

economies are infinite-dimensional webs of interrelationships with multiple feedbacks and feedforwards in which 

agents operate according to their own schema or local and public knowledge, while learning and adapting to emer-

gent characteristics; that is, a process with many more affinities with biological rather than chemical or thermos-

dynamical systems.   

      The ‘deep parameters’ of DSGE, namely elasticity of substitution, preferences, resource limitations, etc. 

are so-called, because they are supposed to be invariant to policy changes. But the only things “deep” in the capi-

talist economy (imagined by Professor Lucas in his “critique”) are the inherent modes of action constituting the 

law of motion, such as monotonic increasing preferences, the attraction to incentives, and the quest of safety in 

domination. In reality, the structure of the economic model consists of exchange ratios, rates, identities, fractions 

of preference assigned to endowments, etc., that are constantly varying in response to changes in preferences, 

endowments, and policies, while the aggregate flows are noisy and sampled at large intervals. Furthermore, market 

economies share many attributes with biological systems in the sense that they can grow or decay, making their 

outcomes non-stationary and therefore non-ergodic. Otherwise put, market economies are complex-adaptive sys-

tems which are in addition subject to risks and uncertainties. Hence they are unable to throw-out fundamental 

statements. Conventional mainstream modelling of a large modern market economy appears almost an intractable 

problem. Nonetheless, model builders of such complexity could draw valuable lessons from both the logistic map 

(see below) and classical mechanics. Imagine a box filled with n particles. Putting together the space (x ε ℜ3) and 

momenta (p ε ℜ3) dimensions in one vector space called the phase space, X, which is a collection of all possible 

states x ε X, forming an abstract mathematical space in ℜ6n. With a sufficiently regular Hamiltonian function, one 

can find a unique solution of the position and momentum of each particle. However, one must first face a strongly 

coupled system of 1024 equations. The question that was subsequently raised was: If the system starts at a certain 

state (x0, p0), will it eventually return to a state close to that initial conditions? According to Sarig (2008), solving 

such a large system did appear intractable until Henri Poincaré made it trivial by viewing the problem from a 

different perspective. That new perspective led Poincaré to the Recurrence Theorem. 

It is worth repeating that market economies are multi-dimensional, dissipative and heavily interconnected 

systems. For every event that occurs anywhere within them, small effects and uncertainties multiply over time, 

cascading into unpredictability (Petersen, 1983; Frigg, 2004). Being infinite-dimensional, they requires an infinite 

set of independent numbers to specify an initial condition. Similar to the well-known problem of classical me-

chanics, described in note 1 below, modelling them may be made trivial if viewed from the perspective of infor-

mation production. In this respect at least, theorists are not powerless. For, Farmer (1982) has shown that such a 

system can be approximated by a finite-dimensional iterated system. And being dissipative, it almost surely pos-

sesses a chaotic attractor of finite-dimensions. Instead of attempting to tract elusive parameters and aggregate 

flows, the perspective of information simplifies the task, for it only requires that the focus be mainly on chaotic 

and predictable behaviors.  

     The main difference between predictable and chaotic behaviors is that predictable trajectories do not pro-

duce new information, whereas chaotic trajectories continuously do. That being the case, one can appeal to the 

notion of Kolmogorov-Sinai (or just metric) entropy as it provides a quantitative knowledge of how chaotic a 

dynamical system is. Moreover, chaotic attractors of finite dimensions have discrete spectra of Lyapunov charac-

teristics exponents. These exponents provide a summary of local stability properties as well as the Lyapunov di-

mension of the attractor. Positive exponents measure the average exponential divergence of nearby trajectories, 

while negative exponents measure exponential convergence on the attractor; and together, they constitute the Lya-

punov spectrum. We will make use of them, including the Kaplan-Yorke conjecture (1979a; 1979b) (which does 

not distinguish between infinite and finite-dimensional systems) to de-fang the infinite-dimensional dynamical 

market economy.    

      In Part II, we use the quadratic map to first establish a spectrum of behaviors within which we think this 

class of growth models lives, and in which we think a market economy belongs, and where it can easily be analyzed 

from the perspective of information production. Generally, the market economy is a dynamic pricing construct 

that may be analyzed as a pair of objects (X, T) consisting of a complete metric space X (i.e. the set of all possible 
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states x of (X, T)) and a family Tt of continuous mappings of the space X into itself with the property Tt + τ = Tt ∘ 
Tτ , where t, τ ε T+ : T0 = I. T+ ε ℜ+ or T+ ε ℤ+ = {0, 1, 2,…}. X is called the phase space ∧, whereas the family T+ is 

the evolutionary operator (a semi-group); the parameter t e ε T+ plays the role of time. If T+ ε ℤ+, the dynamic 

system is discrete. The law of motion indicates that if the system is at state x now, will it then evolve to state T(x) 

after  t? {Tn (x)}n ε ℤ is a record of the time evolution of the system, and understanding the behavior of Tn  (x) as 

n → ∞ is the same as knowing the state of (X, T) in the future. The iterates of the map T are defined by induction. 

That is, T0 := id, Tn :=T ∘ Tn-1, and the aim of the theory is to describe the behavior of Tn (x) as n→ ∞. Since (X, 

T) is dissipative, it is not volume preserving and therefore does not preserve the Lebesgue measure. 

Part III emphasizes the essential role of policy and stable equilibria. Part IV examines the role of self-

organized equilibria in the assessment of the information produced by a chaotic system. Part V summarizes our 

findings. 

 

2. The Spectrum of Equilibria 

 

      The quadratic map is one-dimensional and it is non-hyperbolic. It nevertheless offers a gamut of valuable 

lessons in the form of a spectrum of behavior of growth models. Using symbols such as ∟to indicate “power on”, 

→ “imply”, ∧ for “and”, ∨ for “or”, and ⇔ means ‘equivalent to’. One can succinctly express equation (01) as:  

X t +1 = f (x) = R X t (1 – X t);         (1) 

R ε ℜ ε (0, 4] ∟ X t ∧ R ⇔ ω 

X t (1 – X t)|X t > 0 ∧ R > 1⇔ π; 

ω and π represent, respectively, the structure (or the Jacobian) and the policy set. Choosing the initial condition 

X0 determines the outcome of n discrete steps in the following way: X1 = f (X0) = f 1(X0): x2 = f 2(X0): …, f n (X0) 

= f ∘ f ∘ …∘ f (X0) (n times), while ℜ stands for the real line.  

      One alternative is to use the Bernoulli shift map whose iterated dynamics can produce complicated motion 

as well. For example, let T: (0, 1) → (0, 1), T(x) := 2 X, mod 1, and the unit interval is divided in two segments at 

X = ½ .  Assume now that the unit interval is filled with a uniform distribution of points. We can decompose the 

action of the shift map into 2 steps: i) the map stretches the distribution by 2 which in turn leads to divergence of 

nearby trajectories, and ii) cuts the line segment in the middle as per the modulo action mod 1, which leads to 

bounded motion on the unit interval. Thus the Bernoulli shift is an example of a nonlinear stretch-and-cut strategy 

to generate deterministic chaos in a closed dynamical system. Suppose now that points can leave the unit interval 

and escape to infinity, then the total number of points filling the unit interval is no longer conserved. We would 

have then an open system. We will deal mainly with open systems in what follows, but for now we return to the 

quadratic map, which in some respects is more suitable for the present purpose; furthermore, most of the concepts 

developed therein carry over to higher-dimensions.    

      Table 1 then displays the changes in the spectrum of equilibria as R in (1) is varied. As it can be seen, as 

the value of R is increased, the spectrum displays various modes that can be expected, depending of course on the 

structure of the process. For example, there is ωL at (1< R < 3) for which all equilibria are stable sinks; ω2c (3 < R 

≤ 3.57) would produce stable cycles-2; ωDc (R = 3.57) would give some form of deterministic chaos; ωHc (3.57 < R 

< 3.82) is for high-dimensional chaos; ω3c is for cycles-3; and ωLc is for low-dimensional chaos. In this study high 

and low dimensional chaos are distinguished only by the geometry of the attractor as measured by the Hausdorff 

dimension. With regard to modern markets, because of wild and irregular gyrations of output and feedbacks, one 

can safely rule out ωL, ω2c, and ω3c. Another reason for discarding them is that they do not produce new information. 

We will assume that the structure of the market economy is either ωHc or ωLc.  

Los (2000) has computed the third iterate of the quadratic map and he next ruled out negative and complex 

R values, but at R =3.832, in the middle of the so-called Li and Yorke interval, he found a cycle 3 x 2k (k = 1). Los 

does not say whether or not the unstable equilibria were about to bifurcate, but he noticed 3 distinct periods, and 

therefore all other periods become possible. However, for the present purpose, it is worth underlining that the Lya-

punov exponents in that interval are negative in steady states. We ruled out ω3c because no actual markets with 

these characteristics have been observed, but just before that interval i. e., at R = 3.82, Los found 2 stable equilibria 

at x* = 0.154 and x* =0.958 in the midst of high dimensional chaos. It goes without saying that if these equilibria 

were unstable instead, an appropriate policy (see next section) could elicit a phase change, which in turn could lead 
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to a locally stable self-organized equilibrium. We will return to the concept of self-organized equilibrium in Part 

IV.  

 

2.1. A Model of the Market Economy  

If ‘complexity’ implies diversity and arises from a multitude of connections between a wide variability of 

elements, it is then safe to say that the complexity of market economies is observable daily and is ubiquitous in 

aggregate data (Cohen and Stewart, 1994). Our contention is that being dissipative dynamical systems, their phase 

spaces (Γ) therefore contain invariant sets or attractors. Thus, valid or invalid assumptions notwithstanding, casual 

observations show that a market economy belongs to the class of models given by:  

dX /dt = F(π) ω(x (t))          (2)                          

Λ∏ Λω (π ∟(ω ∧ x  (t0) = x0) ∧ ω ε ℜm → dim X ∧ π ┐ ω;  

φ : πi ∟ ωjk|j, k ε q < m. 

That is, for π and ω, where π has power over ω and x0; ω determines the dimension of X, and π is not ω. 

In other words, ω is the structure of the model or a vast networks of connections with nodes in the phase space 

∧, and π is a policy space in which ω is embedded. φ is a reflexive “onto” map or a veto power either on ω, (i. 

e., capable of eliminating a few degrees of freedom) or capable of resetting x0 in an attempt to put the system in 

a stable sub-space Es (see below).  

 
Table 1. Equilibria and LCEs as a Function of R in the Quadratic map. 

Value of R (1) Equilibria x* Lyapunov coefficient λ 

0 ≤  R  ≥ 1 no solution           Violation of π  

1 < R ≤ 3 linearity < 0 

3 < R ≤ 3.57 Period 2k, {k = 0, 1, 2 

… 

< 0 

R = 3.57 Periodic & aperiodic 

cycles 

 

= 0 

3.57 < R < 3.82 Stability & instability ≶ 0 

 

3.8284 ≤ R 3.8414 (2) P- 3k    {k = 0, 1, 2,…} ≶0 

 

3.8414 < R ≤ 4 Low dim chaotic > 0 

(1Ac)  counting for instrument noise. (2) Computed by Medio (1992). 

 

First, suppose that ω is known explicitly, then its Jacobian is also known. That is,  

J (t) = ∂Ti / ∂Xi , i ε m,          (3) 

where Ti is the mapping in note 2, the ijth elements of the matrix Jij = ∂Xi (t)/∂Xj, where Xi (t) is the ijth 

component of the state vector at time t, and J (t) is the observed square determinant (as it takes 2 for a connection) 

describing the overall contraction of the phase space volume, while its eigenvalues describe the divergence and 

convergence of trajectories. We first suppose that the square matrix J (t) has k distinct eigenvalues with negative 

real parts, h eigenvalues with positive real parts, and g = (m – k – h) eigenvalues with zero real parts.  

The attractor Д of J (t) in this case is non-hyperbolic. However, a center manifold will not add anything 

to our discussion even though non-hyperbolic attractors are more common in the real world. For simplicity of 

exposition, we suppose that the attractor of (2) is hyperbolic, and that all equilibria are translated to point 0 located 

at the origin. In the case in which of an attractor of (2) is hyperbolic, there exist a stable subspace Es of dim k  

unstable sub-subspace Eu of dim (m –k). Es span (v1, v2, …, vk) ∧ Eu span (vk + 1,…, vm) such that Es  Eu = ℜm. We 

then have a differentiable manifold Ɯs tangent to Es at 0 ∧ Ɯu tangent to Eu at 0. Then ∀t  0, the flow φt (Ɯs) ⊂ 

Ɯs, ∀x0 ε Ɯs|lim t → ∞, x0 = 0. Similarly, ∀t ≤ 0, φt (Ɯu) ⊂ Ɯu, ∀x0 ε Ɯu|limit t → - ∞, φt (x0) = 0, where as before, 

x0 stands for initial conditions. If J (t) has pure imaginary eigenvalues in the form of σj = aj + ibj, then the general-

ized eigenvectors are wj = uj + ivj.  
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If J (t) has pure imaginary eigenvalues in the form of σj = aj + ibj, then the generalized eigenvectors are wj 

= uj + ivj. We will not spend much time on negative eigenvectors except to repeat that if the dominant eigenvector 

is negative, then no new information could be had since it would be known in advance that the flow would end up 

in the stable manifold (Ɯs); perhaps that is the reason why Kolmogorov initially thought that deterministic systems 

did not provide information (Sinai, 1959). 

 

3. Measuring the Metric Entropy and the Level of Chaoticity 

      

The Kolmogorov-Sinai entropy (KS) notion is examined relative to another notion called partition (Kol-

mogorov, 1958). A partition γ = {γi|i = 1, 2, …, n} of X is a collection of non-empty, non-intersecting sets that can 

cover X. That is, γi ∩ γj = ≥≤ , ∀  i  j and X = ∪i
n
  γi. Thus, if γ is a partition, so is Tt

-1 γ :={T-1 γ | i ε n. 

Given the partition γ in a dynamical system, let  

Hn (γ T) := (1/n) (γ V T-1 γ V,…,Tn +1 γ ).                (4) 

In the limit H (γ T) := lim n → ∞ (Hn,,T) exists. Then the KS entropy is defined (Frigg, 2004; Petersen, 1983; 

Kolmogorov, 1958; Shannon, 1949) as:  

SKS := supγ {H (γ, T)}           (5) 

The KS entropy is linked to the Shannon entropy H (P). In the latter, it is assumed that there exists a source 

that is producing discrete messages and a receiver. Let a complete messages be M ={m1, m2, …, mn} and its 

probability distribution be P ={p1, p2, … pn}, where pi > 0 and ∑ pi = 1. Then the discrete Shannon entropy is:  

H (P) := - ∑ pi log2 (pi )            (6) 

Thus Hn (γ, T) measures the average amount of information produced by the system per step over the first 

n-steps relative to the coding γ. A positive KS entropy indicates that the system is unpredictable. To make this 

clearer, let us emphasize that the KS entropy measures the amount of information contained in an individual object 

(say a string) x by the size of the smallest program that generates it. It naturally characterizes a probability distri-

bution over all possible binary strings Ɱ. 

The Shannon entropy (H (P)) of a random variable X, on the other hand, is a measure of the average 

uncertainty. That is, the smallest number of bits required to describe x (the output of X) when the receiver comes 

to know the probability distribution. In the context of communication theory, it amounts to the minimum number 

of bits that is required to transmit x. Hence, it would seem that KS entropy and Shannon entropy H (P) are con-

ceptually different concepts. The former is based on the length of programs, while the latter is based on probability 

distributions. Yet, for any distribution computable by a Turing machine, the total value of KS entropy is equal to 

H (P) up to a constant term Ɱ as shown below. 

To recapitulate, we suppose a set of independent messages (M) and probability distributions (P). The 

receiver receives mi and he gets log2 (1 / pi) of information. For Ɱ independent messages, he or she receives a total 

of information I, given by: 

I = ∑i=1
m (Ɱ pi) log2 (1/pi)         (7) 

Then, the average information he gets per individual messages is:  

〈I 〉 := (1/ Ɱ) ∑ (Ɱ pi) log2 (1/pi )        (8) 

= ∑ pi log2 (1/pi).  

 According to Shannon, given a probability distribution P, its entropy is:  

H (P) := ∑ pi log2 (1/pi)          (9) 

Therefore, H (P) = 〈I〉, implying that the entropy of P is just the expected value of the information given 

by P. If the Shannon entropy is equivalent to the potential information gained once the experimenter learns the 

outcome of the experiment, then, the more entropy a system has, the more information one can potentially gained 

once one knows the outcome of that  experiment or is able to apprehend its probability distribution. Another way 

of seeing H (P) is that it is a way to quantify the potential reduction of one’s uncertainty once one has learnt the 

outcome of a probabilistic process.   

The KS entropy is also linked to the Lyapunov characteristic exponents (LCE) via the concept of expo-

nential divergence. The LCEs measure the mean exponential divergence or convergence of solutions originating 

near x. Positive ones indicate that solutions diverge exponentially on the average and in some directions. One can 

then appeal to Persin’s Theorem (1977) (see also Eckman and Ruelle (1985)) which asserts that under certain 
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assumptions the sum of the positive LCEs is a measure of the KS entropy. If the system is chaotic then at least one 

of the LCE is positive. In addition, it may have dense orbits and sensitive dependence on initial conditions (SDIC), 

which is a critical hallmark of chaos. In fact, we consider the presence of SDIC as the main distinction between 

high and low-dimensional chaos in this study. For, whenever SDIC is present, the positivity of these exponents 

increases. Given their crucial role in the determination of chaotic behavior, a brief review their derivation might 

further increase understanding.        

Suppose that initially we have two trajectories separated by a small distance d0 on the unstable manifold. 

The trajectories will diverge at time t later by a distance dt. The rate of separation of the two trajectories is measured 

by the Lyapunov exponents (λ) as |dt|≈ eλt|d0|. In statistical mechanics, one is mainly interested in limits as t goes 

to infinity. Here the final separation of the two trajectories depends on λ. We may then define the maximum λ as 

the normal exponent in the limit. The reason is that a chaotic trajectory will automatically follow its maximum 

expanding direction. That is,   

λ := lim t→∞ lim d→0 (1/t) ln|dt / d0|        (10) → 

there are m such exponents and whenever one is positive we know that we are in a chaotic regime. 

 

           3.1.   The Lyapunov Spectrum  

  Focusing on prediction errors observed in economic forecasts made by institutions such as the Federal 

Reserve Bank of New York, on can safely infer the complexity of economics. From the above discussion, it is 

supposed that the Jacobian of (2) is known and that its attractor is hyperbolic. Consequently, there are k negative 

LCEs and h positive ones, and the so-called Lyapunov spectrum can be set up as: 

{λ+
1h, > λ+

2h >, …, > λ+
hh, > λ-

1k,> λ-
1k, > λ-

2k >, …,> λ-
kk}.  

Then from the Persin’s Theorem, the metric entropy of the attractor is:  

En (Д):= 1
h λ+

hi           (11) 

 that is, the metric or the KS entropy is just the sum of the positive LCEs or the average information 

generated by system (2).   

 The Kaplan-Yorke conjecture states that for an m-dimensional system, the index (DKY) may be computed 

from the Lyapunov spectrum. In other words, the information dimension is the Lyapunov dimension as measured 

by the DKY index:  

DKY:= (the order of λhh
+) + (ih λ+

ih) / |λ-
1k|       (12) 

where by ‘the order of’ it is meant the cardinal of the order of the least positive LCE in the spectrum.  

It is worthwhile to recall here that it’s all started with a conjecture by Kolmogorov to the effect that only 

stochastic systems produce information. However, it was also found later that several deterministic systems had 

positive Kolmogorov-Sinai entropy (KS). This is probably due to Yakov Sinai who, inspired by Kolmogorov and 

Shannon, was the first to come up with the mathematical foundation for quantifying the complexity of a dynamical 

system. Nowadays, it is widely accepted that the Kolmogorov-Sinai entropy is the basic tool used to capture the 

property of both stochastic and deterministic systems to produce information as the KS entropy measures the 

highest average information received from the present state of a dynamic system endowed with a coding, given its 

past states (that is, information that has already been received). Hence, the KS entropy measures the unpredicta-

bility of a dynamic system, a concept that is in harmony with the Shannon entropy where the next sequence is 

equivalent to new information  

Suppose now that ω is unknown. According to Farmer, an infinite-dimensional system can be approxi-

mated by a finite-dimensional one. And simulation carried out by Farmer has effectively shown that the metric 

entropy does not vary much beyond a 20-D attractor.  However, even a changing, finite-dimensional system may 

prove to be intractable. Economists can avoid such torment of trying to construct ω by appealing to Takens (1981; 

Mané, 1980; Liu, 2009; Medio, 1992) who have asserted that in lieu of an attempt to determine ω, a pseudo phase 

space can be constructed from observed data such as a time series. Obviously, a measured time series is only a 

scalar measurement from one variable which is not a trajectory. This difference is resolved by the delay coordinate 

embedding technique proposed by Takens. For if the dynamical system and the measured variable are generic, 

then the delay coordinate map from a smooth compact manifold of dimension, say, M to ℜm is a diffeomorphism 

on M. Therefore, under fairly general conditions, the unknown dynamical system can be reconstructed from the 

time series. After all, we have learned since Henri Poincaré that exact solutions are not necessary to understand 

and to analyze non-linear dynamical processes. Instead, the emphasis should be on describing the geometrical and 
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topological structure of ensemble of solutions, and the structural elements of a non-linear process are attractors, 

subspaces, and the types of behavior.   

If the structure of the market economy cannot be specified due to excessive complexity and high dimen-

sionality, economists should focus on proven techniques used in other disciplines to recover information of an 

unknown model through the observations of one of its output. Thus, two theorems (see Takens, 1981; Mané, 1980) 

provide the link between the true model and the dynamics of the model reconstructed from observed data. This is 

straightforward when the unknown model is dissipative, because one can be assured that the process converges on 

an attractor. Even though the true system might be infinite-dimensional, the resulting attractor may be low-dimen-

sional. If the reconstructed attractor exhibits chaoticity, one can be sure that the unknown attractor is non-linearly 

deterministic and that its behavior is also unpredictable. If it is, then it produces information that can now be 

computed by following the procedure outlined in Part III. 

The reconstruction process begins with a univariate time series such as:  

Z (t), Z (t + τ), Z (t + 2τ), …, Z (t + (n – 1)τ),  

where τ is the time delay. Medio observes that under mild conditions, it can be shown that the dynamics 

of the reconstructed phase space have the same asymptotic properties as those of the unknown attractor for almost 

any choice of τ, provided that the length of the univariate series is long enough and that the sampling period is 

short. 

The Takens’ method. Takens’ Theorem asserts that if n is large enough compared with the dimension of 

the attractor, then the n-dimensional image of the reconstructed attractor provides a close topological picture of 

the unknown one. The question now is how large should n be? Both Takens and Mané suggest a condition on the 

size of n that is sufficient to produce a good projection; that is, if m is the dimension of the unknown attractor, 

then n  2 m + 1. Obviously, this is helpful if m is known and finite; anyhow, the reader is referred to these two 

sources for more details on that method. 

 Knowing that economic time series are seriously contaminated with noise, Medio recommends filtering 

before using the Takens’ method in order to extract meaningful information. In sum, a good use of that method 

requires a long time series, short sampling period, proper window length, and filtering.  

 The Caterpillar-SSA method. According to Medio, Takens’ method is very sensitive to noise. He recom-

mends the Caterpillar-singular spectrum analysis (SSA hereafter) which gives a more accurate picture of the 

attractor, principally when the signal to noise ratio is low.  

The SSA method is a powerful method of time series analysis developed independently in St-Petersburg 

(Russia) under the name ‘Caterpillar’ and in the US-UK under the name SSA. It is a model-free method that 

consists of the transformation of a one-dimensional series into a multi-dimensional series by one parameter trans-

lation procedure, singular value decomposition, and reconstruction of the series according to its principal compo-

nents. It can analyze short and long series, stationary and nonstationary, almost deterministic and noisy series, and 

it can detect chaos. This is not the place for a detailed description of the method. The interested reader is referred 

to Golyandina and Zhigljavsky, (2005), (2013), Danilov and Zhigljavsky, (1984). It suffices here to emphasize the 

fact that the SSA method is widely and successfully used in many other disciplines. Once the attractor is recon-

structed, formulae (11) and (12) can again be used; even though ω is not known explicitly. We would then have a 

situation similar to a case in cosmology. That is, by observing the angular velocity of visible masses around a 

galactic center, cosmologists can infer the presence of a black hole at the center of masses even though the black 

hole itself cannot be observed. 

 

4. Self-Organized Equilibria 

  

Neo-Keynesian economists such as Paul Krugman are firmly attached to the notion of equilibrium. For 

Krugman, there is no alternative to “maximization” and “equilibrium”. We do not think that maximization is com-

pelling, but there is no doubt that equilibrium is of central importance in the present context. It is well-known that 

flipping a fair coin once provides us with one bit of information per throw, but the information may not be acces-

sible unless the outcome is actually observed. In the present set-up, the potential average information produced by 

system (2) is observable and accessible only if a self-organized equilibrium obtains. The law of physics says that 

information cannot be destroyed. Hence, on a chaotic attractor, information can only be dissipated on the unstable 

manifold (see note 3), while the true probability distribution remains unknown. Our central objective in this paper 

is to learn how to conserve the information produced by system (2). The only way to achieve this is to call on an 
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appropriate policy that would induce a change in decision-making (the equivalent of a phase shift in physical 

systems). Put differently, a change in decision-making acting on ω would hopefully create a stable subspace of a 

self-organized equilibrium nearby.  

The reason for this is motivated by the lesson of the quadratic map. Los’ analysis reveals that a phase shift 

of 180 degrees always preceded a bifurcation. For example, as R increases from 3, a phase shift occurs at R = 3.44 

followed by the first bifurcation at R = 3.50. Another phase shift occurs at R = 3.54 followed by the second 

bifurcation, and so on until R = 3.57. If the same phenomenon occurs in mathematical, chemical, cosmological, 

and biological systems, why not in social dynamical system? This lends support to the belief that in social dynam-

ical system, a phase shift may well be the equivalent of a change in decision-making due to an efficient policy. It 

is worth repeating that we are assuming that a policy that inspires confidence will lead to changes in decision-

making which in turn may lead to a change in the structure (ω). As shown above, at R =3.82, the process, on its 

own, alternates between stability and chaos. If a market were to show such intermittency, it would be safe to simply 

assume that economic agents would respond to a change in policy or a phase change leading to a self-organized 

equilibrium, where equation (11) can then be evaluated.   

Self-organization is usually defined in various ways. One definition refers to the spontaneous order that 

arises out of local interactions between smaller parts. Another claims it arises out of random fluctuations that are 

subsequently amplified by positive feedbacks. In Prigogine and Stangers (1984), Nicholis and Prigogine, (1977), 

Hazy and Ashley, (2004), it is defined as some sort of order far from equilibrium. In chaos theory, self-organization 

is discussed in terms of islands of stability within a sea of chaos. In this paper we will adhere to the definition of 

von Foerster who defines it as the case where random fluctuations (but also a change in policy) increase the chance 

that a chaotic system may fall into the basin of a stable equilibrium arising out of a phase shift (Ashley, 1947; 

Mitchell et al., 1994).  

In nature, self-organization is ubiquitous. It is regularly observed in physical, chemical, biological, and 

cognitive systems. It is also observed in ecology, neural networks as well as in social and mathematical systems. 

It obviously exists in cosmology judging by the apparent stability of our solar system; a stability that has lasted 

long enough to allow for the presence of conscious beings on planet earth.  

It is of course legitimate to ask whether or not self-organization arises in market economies. It must be 

first recalled that economic agents can learn and adapt. The economy itself is a path-dependent system. Los’ anal-

ysis among others clearly shows that following a phase shift of 180o, previously stable equilibria become unstable 

while the resulting bifurcation reestablishes stability. We have argued that in a social dynamical system such a 

market economy, the equivalent of a phase shift is a change in decision-making (preceded by the observation of 

instability and followed by a change in policy that strengthens the confidence of agents in the immediate present 

and the near future). I do not have a definition of such a policy, but whatever it may be, it must be a policy that 

instills sufficient confidence to elicit a positive attitude on the part of economic agents.  

The importance of striving for a stable outcome cannot be over emphasized. It is a sine qua non condition 

for the actual assessment of the average information produced by the market economy. Because, the average in-

formation rate, i.e., the entropy, enriches the collectivity through abundance and high productivity that in turn 

drives the growth of the economy.  
 

5. Concluding Remarks 

  

This paper argues that while market economies are often decried for their undesirable outcomes, besides 

producing goods and service, they have another beneficial side, i. e., they produce information. Modern market 

economies are very complex infinite-dimensional systems. Economists have built a plethora of models in an at-

tempt to capture their dynamics. Yet the performance of these models leaves much to be desired. The alternative 

is to approach the problem from a different perspective. That is, from the perspective of information production.  

To export our main argument we first draw on the quadratic map to establish a spectrum of equilibria of 

albeit dissipative dynamic systems as the set ω = {ωL, ω2c, ωDc, ωHc, ω3c, ωLc}. We next concluded that ωL (that 

yields linear time invariant models), ω2c and ω3c (that produce period-doubling cascades) can be safely be ruled 

out either from observations of real markets or due to their inability to produce new information. The structure of 

a modern market economy most likely falls either within the intervals of high-dimensional or low-dimensional 

chaos. Therefore, they produce information.   



Dominique, C-R., 2016. Analyzing Market Economies from the Perspective of Information Production, Policy, and Self-Organized Equilibrium. Expert 

Journal of Economics, 4(1), pp.14-23 

22 

After locating market economies in the spectrum, we next restrict ourselves to procedures for which there 

is a consensus such as the metric entropy and the Lyapunov spectrum in order to measure the level of chaoticity 

of a proposed model. We have also emphasized that the structure ω may not be specifiable. In such a case, one 

may proceed to reconstruct the unknown attractor from observed data such as a time series. 

After observing the enormous waste that public institutions are capable of, neoclassical economist such as 

von Hayek, Friedman, Lucas, etc. tend to fall in the category of opponents of government policy. However, this is 

tantamount to go from one extreme to another even though extremes have no place in human affairs. There is 

plenty of evidence that in the absence of appropriate policies, market economies will soon become unstable. We 

have then argued for a more central role for policies that can induce confidence in economic agents. Efficient 

policies giving rise to change in decision-making are equivalent to a phase change in physical and mathematical 

systems. Such phase changes are necessary to bring about self-organized equilibria, where the entropy generated 

by the economy can be evaluated.  

If new information produced by a chaotic economic process is not properly harnessed due to the presence 

of stop-gap policies or policies bought outright by powerful agents, one should observe wild gyrations of output 

and falling total factor productivity; that is, falling total factor productivity is evidence that the economy is trapped 

in unstable regimes. The US market presents a clear case in point. Since the later part of the 1990s, government 

policies have freed huge corporations from both their social responsibility and ethical market behavior. Moreover, 

the government has unwisely deregulated and subsidized the financial market thus allowing it to become ever 

since truly destructive and predatory. As a consequence, the market has moved on unstable trajectories. It could 

have been otherwise. When policies are conducive to stability, new information obtains, and it manifests itself 

through, say, the difference between, a Ford Model A and the Lincoln Continental, or between the slide rule and 

the computer, among many other examples. In sum, information + policy + innovation = growth. It suffices to 

think of the space program, internet, iPhone, solid-state memory, GPS, etc. Hence, any notion that associates 

market economies to linear time invariance or that claim that markets should be unfettered is untenable.    

Thus, instead of going to the torment of building DSGE models, students of economics would do well to 

focus their attention on statistical methods, dynamic analyses, attractor reconstruction, and on the task of learning 

what constitutes policies conducing to self-organization. Because, in a self-organized equilibrium, competitive 

markets through-out new information which is the true modern asset of a society.  

 

           References          

                                  

Ashby, W. R., 1947. Principle of Self-Organizing Dynamic Systems.  The Journal of General Psychology, 37 (2), 

pp.125-128.  

Cohen, J. and Stewart, I., 1994. The Collapse of Chaos: discovering simplicity in a complex world. New York: 

Penguin Books.  

 Danilov, D. and Zhigljavsky, A., 1997. Principal Components of Time Series: Caterpillar Method. St- Petersburg, 

Russia: St-Petersburg Univ. Press 

 Eckman, J-P. and Ruelle, D., 1985. Ergodic Theory of Chaos and Strange Attractors.  Review of Modern Physics, 

57 (3), pp.617-656.  

Farmer, J.D., 1982. Chaotic Attractor of Infinite-dimensional Dynamical Systems.  Physica 4D, 4 (3), pp.366-393.  

Frigg, R., 2004. In What Sense is the Kolmogorov-Sinai Entropy is a Measure for Chaotic Behavior?  The British 

Journal for the Philosophy of Science, 55, pp.411-434.  

Golyandina, N, and Zhigljavsky, A., 2013. Singular Spectrum Analysis for Time Series. Berlin: Springer Verlag.   

Golyandina, N, and Zhigljavsky, A., 2005. Automatic Extraction and Forecast of Time Series Cyclic Components 

Within the Framework of SSA.  Proceedings of the 5th St-Petersburg Workshop on Simulation.  St-Peters-

burg: St-Petersburg Univ. Press, pp.45-50. 

Hazy, J. and Ashley, A., 2004. Unfolding the Future: Bifurcation in Organizing Forms and Emergence in Social 

Systems.  Emergence, Complexity and Organization, 13 (3), pp.57-79. 

Kaplan, J. and Yorke, J., 1979. Chaotic Behavior of Multi-dimensional Difference Equations.  In Peitgen, H. O. 

and Walther, H. O., eds. Functional Difference Equations and the Approximation of Fixed-points: Lecture 

Notes in Mathematics. New York: Springer-Verlag, vol. 730, pp.204.  

Kaplan, J. and Yorke, J., 1979. Pre-turbulence: A Regime Observed in a Fluid Model of Lorenz.  Communications 

in Mathematical Physics, pp.67-93.   



Dominique, C-R., 2016. Analyzing Market Economies from the Perspective of Information Production, Policy, and Self-Organized Equilibrium. Expert 

Journal of Economics, 4(1), pp.14-23 

23 

Kolmogorov, A., 1958. A New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebes-

gue Spaces.  Dokl Acad. Nauk, SSSR, 119, pp.861-864 

Liu, Z., 2009. Chaotic Time Series Analysis.  Mathematical Problems in Engineering, vol. 2010, Art.ID 720190.  

Los, A. C., 2000. Visualization of Chaos for Finance Majors.  Working Paper 00-7, School of Economics, Ade-

laide Univ. pp.17-18. 

Mané, R., 1980. On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps.  In Rand, D. A. 

and Young, L. S., eds. Volume 898 of Springer Lecture Notes in Mathematics, Berlin: Springer Verlag, 

320. 

Medio, A., 1992. Chaotic Dynamics: Theory and Applications. Cambridge, UK: Cambridge Univ. Press.  

Mitchell, M., Crutchfield, J., and Hraber, P., 1994. “Dynamics, Computation, and the ‘Edge of Chaos’: A Reex-

amination.  In Cowan et al., ed.. Complexity, Metaphors, and Reality, Santa Fe Inst. Stud. in the Sciences 

of Complexity, vol. 19. Reading, MA: Addison-Wesley. 

Nicolis, G. and Prigogine, I., 1977. Self-organization in Non-equilibrium Systems from Dissipative Structures to 

Order through Fluctuations. New York: Wiley & Sons.   

Persin, J. B., 1977. Lyapunov Characteristic Exponents and Smooth Ergodic Theory.  Russian Mathematical Sur-

veys, 32 (4), pp.55-114.  

Petersen, G., 1983. Ergodic Theory. Cambridge, UK: Cambridge Univ. Press.  

Prigogine. I. and Stangers, I., 1984. Order out of Chaos: Man’s New Dialogue with Nature. New York: Bantam 

Books. 

Rosenberg, A., 2016. Krugman’s philosophy of Economics and What It Should Be. [online] Available at: 

www.3ammagazine.com?3am?paul-krugmans-philisophy-of-economics [Accessed on Jan. 15, 2016].  

Sarig, O., 2008. Lecture Notes on Ergodic Theory.  Penn State, Fall, p.2. [online] Available at:  

http://www.math.psu.edu/sarig/506/ErgodicNotes.pdf 

Shannon, C. and Weaver, W., 1949. The Mathematical Theory of Communication. Urbana, Ill.: Univ. of Illinois 

Press.  

Sinai, Y., 1959. On the Concept of Entropy for Dynamical Systems.  Dokl Acad.Naud SSSR, 124, pp.768-771. 

Takens, F., 1981. Detecting Strange Attractors in Turbulence.  In Rand, D. A. and Young, L. S., eds. Dynamical 

Systems and Turbulence. New York: Springer Verlag, pp.366-381. 

 

 

 

 

http://creativecommons.org/licenses/by/4.0/

