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In the present paper, there are presented, theoretical and applicative, two issues: the 

evaluation of the European options using the Monte Carlo method and the 

measurement of the entropy of information for the price of the underlying asset of the 

option. The underlying asset used in our analyses is the share of Compa SA. Through 

Monte Carlo simulations, scenarios are created on the random evolution of the 

underlying asset, and the valuation of the option on the underlying asset is made 

using the Feynman-Kač theorem. The distribution we use is lognormal. Also, in the 

paper is measured the entropy of information of Shannon type. The measurement of 

the entropy of information of the stock market price of the underlying asset is 

calculated annually, considering the stock market price in this case as a discreet 

random variable. 
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1. Introduction 

 

One of the most used methods for evaluating a derivative of the nature of the option is the Monte Carlo 

simulation. The use of the Monte Carlo simulation to create scenarios on the evolution of the underlying asset 

price and the Feynman-Kač theorem can be a very useful way for practitioners to determine solutions for Call 

and Put. So, one of the problems of this paper is to describe theoretically and practically how this can be 

achieved. The solution for the assessment of options was given by Fischer Black and Myron Scholes (1973) 

through an equation with second order partial derivatives, parabolic, and represents a major scientific 

contribution to finance, creating an industry of one million billion dollars. 

Mainly, solving the Black-Scholes equation can be accomplished by two methods (Negrea and 

Damian, 2015, p. 333): either by using the classical theory of solving Partial Derivatives Equations of parabolic 

type, or by using the Feynman-Kač representation theorem. 

Regarding the Feynman-Kač theorem, we can say that it is extremely useful in solving the Black-

Scholes equation, representing a method of solving the partial derivatives equations that are very convenient 

from a technical point of view. In fact, the theorem provides the probabilistic solution of the Black-Scholes 
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partial derivative equation, and the explicit calculation of expectation of the Feynman-Kač theorem offers the 

possibility of determining the analytical solutions for Call and Put in the Black-Scholes model. 

Also, along with the above issues, the paper describes how to determine the entropy of information on 

the price of the underlying asset. In this respect, our objective here is to observe the evolution of the entropy 

of information of the price of the underlying asset from one year to the next and the way in which we will 

determine the annual entropy of information is based on the information theory methodology proposed by 

Claude E. Shannon (1948). 

The use of the concept of entropy of information to designate the amount expressed by the appearance 

of a symbol in the set of possible symbols was suggested to Shannon by John von Neumann. Shannon's theory 

can be formulated as follows: every symbol we use in communication is a macro state to which a number of 

different micro states can correspond, meaning the other symbols in the set of possible symbols. So, the 

occurrence of a symbol thus contains a surprise value that derives from the fact that it excluded the occurrence 

of one of the other symbols of the set. 

In the above sense, this theory makes it possible the precise formulation of the difficulty of 

communication: a symbol is a macro state whose surprise value is determined by how many micro states (i.e., 

individual symbols) correspond to this macro state (Nørretranders, 2009, p. 48). 

This being said, we are also making a last statement regarding the case study from the paper, namely 

that the underlying asset to which we refer is of the nature of the stock listed on the Bucharest Stock Exchange, 

namely shares of Compa SA (Bvb.ro, 2018a), which does not distribute dividends. 

 

2. Literature Review 

 

A synthesis of the works using the Monte Carlo method in the evaluation of the options is found in 

our previously published article, which refers to the evaluation of the various types of options (Brătian, 2017): 

for options of European type, Boyle (1977); for options of Asian type, Broadie and Glasserman (1996); for 

options of American type, Langstaff and Schwartz (2001); we also mention here Charnes (2000), Bolia and 

Juneja (2005), Giles (2007), Bingqian Lu (2011), Jespersen (2015). 

Measuring entropy on capital markets is the subject of many papers, being a matter of scientific 

relevance. Here are some of these works that deal with this issue: Nawrocki and Harding (1986); Cabrales et 

al. (2011); Bentes and Menezes (2012); Maasoumi and Racine (2002); Zhou et al. (2013); Sheraz et al. (2015); 

Pele et al. (2017). A synthesis work on the development of information theory over a period of fifty years is 

that of Verdú (1998). 

 

3. Methodology 

 

3.1. Evaluating Options using the Feynman-Kač Theorem 

In the model proposed by Black and Scholes for evaluating options, we have a number of assumptions, 

namely (Black and Scholes, 1973, p. 740):  

“the short-term interest rate is known and is constant through time; the stock price follows a random 

walk in continuous time with a variance rate proportional to the square of the stock price. Thus, the distribution 

of possible stock prices at the end of any finite interval is lognormal. The variance rate of the return on the 

stock is constant; the stock pays no dividends or other distributions; the option is "European," that is, it can 

only be exercised at maturity; there are no transaction costs in buying or selling the stock or the option; it is 

possible to borrow any fraction of the price of a security to buy it or to hold it, at the short-term interest rate; 

there are no penalties to short selling. A seller who does not own a security will simply accept the price of the 

security from a buyer, and will agree to settle with the buyer on some future date by paying him an amount 

equal to the price of the security on that date”. 

From the above hypotheses, the price of the underlying asset follows a random evolution given by the 

following equation: 

 

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵     (1) 

where:  

S = price of the underlying asset;  

µ = drift;  

σ = volatility of the underlying asset;  

dB = Brownian motion;  

t = time. 
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The value of the underlying asset in the Black-Scholes methodology follows a random neutral risk 

evolution. This the dynamics can be determined by Girsanov's theorem (see Brătian, 2017). Under these 

conditions, the dynamic equation is: 

 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵∗      (2) 

where: 𝑑𝐵∗ = 𝑑𝐵 +
𝜇−𝑟

𝜎
𝑑𝑡. 

 

In extenso, to make it an Itô process, (𝑑𝑥𝑡 = 𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝐵𝑡) to be martingale, its drift must be null. 

Thus, in order to use the martingale property, it can be made a probability change that transforms this process 

into a stochastic integral. The change can be achieved through Girsanov's theorem. 

The theorem tells us that (Brătian, 2017): either a Brownian movement 𝑑𝐵𝑡 , defined on the probability 

field (𝛺, ℱ, 𝑃), ℱ𝑡  a filter generated by 𝐵𝑡  and the stochastic process 𝜃𝑡. We define the probability measure 

𝑄(ℱ) = ∫ 𝐿𝑇𝑑𝑃
 

ℱ
, where 𝐿𝑇 = 𝑒

−[∫ 𝜃𝑡𝑑𝐵𝑡−
1

2
𝜃𝑡

2𝑑𝑡
𝑡

0
]
, with 𝑡 ∈ [0, 𝑇]. Then the process 𝑑𝐵𝑡

∗ = 𝑑𝐵𝑡 + 𝜃𝑡𝑑𝑡 is a 

Brownian motion relative to the measure 𝑄. Hence, in a neutral risk-based universe, the expected return on the 

underlying asset is the risk-free interest rate (𝑟). Change of probability (of the real 𝑃 in the risk-neutral 𝑄) 

recovers the Brownian motion, changes the drift, but does not change the diffusion coefficient. Volatility is 

the same on both real and risk-free markets. 

We also know from the assumptions that the distribution of the underlying asset is lognormal. 

Therefore, the neutral risk stochastic differential equation above can be written as follows: 

Let 𝐹 =  𝑙𝑛𝑆. Differential of function 𝐹, developing in Taylor series, is: 

 

𝑑𝐹 = 𝑑(𝑙𝑛𝑆) =
𝑑𝐹

𝑑𝑆
𝑑𝑆 +

1

2

𝑑2𝐹

𝑑𝑆2 𝑑𝑆2 = 

= 
1

𝑆
(𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵∗) +

1

2
(−

1

𝑆2) 𝜎2𝑆2𝑑𝑡 =  

= 
1

𝑆
𝑟𝑆𝑑𝑡 +

1

𝑆
𝜎𝑆𝑑𝐵∗ −

1

2𝑆2 𝜎2𝑆2𝑑𝑡 =  

= 𝑟𝑑𝑡 + 𝜎𝑑𝐵∗ −
1

2
𝜎2𝑑𝑡 =    

= (𝑟 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝐵∗ =   

=(𝑟 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑍√𝑑𝑡        (3) 

 

where: 𝑍~𝑁(0,1) 

Note: In the above development we used heuristics 𝑑𝑆2 = 𝜎2𝑆2𝑑𝑡. 

 

Expression (3) can be integrated and we will have: 

 

∫ 𝑑(𝑙𝑛𝑆) = ∫ (𝑟 −
1

2
𝜎2)

𝑡

0

𝑡

0
𝑑𝑡 + ∫ 𝜎𝑑𝐵∗𝑡

0
 =      

= lnS(t) − lnS(0) = (𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝑍√𝑡     (4) 

 

As a result, the solution for 𝑆(𝑡) is: 

 

𝑆(𝑡) = 𝑆(0)𝑒𝑥𝑝 (𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝑍√𝑡,    (5) 

 

and over a step of time (𝛥𝑡) we will have: 

 

𝑆(𝑡 + ∆𝑡) = 𝑆(𝑡) + ∆𝑆 = 𝑆(𝑡)𝑒𝑥𝑝 [(𝑟 −
1

2
𝜎2) ∆𝑡 + 𝜎𝑍√∆𝑡]   (6) 

 

Note: Equation (6) will be used by us to create scenarios on the evolution of the underlying asset. 

 

Next, the Black-Scholes equation tells us that: 

 
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + 𝑟 (𝑆
𝜕𝑉

𝜕𝑆
− 𝑉) = 0     (7) 
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We know that the value of the option is a function of the underlying asset at the time of maturity (T). 

As a result, it must be written a function 𝑉(𝑆𝑇 , 𝑇) representing the profit/loss on maturity for Call and Put. 

For the Call option we have (Wilmott, 2007, pp. 175-179): 

 

𝑉(𝑆𝑇 , 𝑇) = max(𝑆𝑇 − 𝐸, 0) = 𝑃𝑎𝑦𝑜𝑓𝑓(𝑆),   (8) 

 

and for Put we have: 

𝑉(𝑆𝑇 , 𝑇) = max(𝐸 − 𝑆𝑇 , 0) = 𝑃𝑎𝑦𝑜𝑓𝑓(𝑆)   (9) 

 

where: E = strike price; T = the time of maturity. 

 

The only probabilistic solution of equation (7) is given using the Feynman – Kač theorem. The 

Feynman-Kač theorem tells us that if S is a variable that follows a stochastic process, defined as in relation 

(2), and either a 𝑉(𝑆, 𝑡) function, differentiable from 𝑆 and 𝑡 thus: 
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + 𝑟 (𝑆
𝜕𝑉

𝜕𝑆
− 𝑉) = 0, then 

putting the condition to the limit 𝑉(𝑆𝑇 , 𝑇) and 𝑟 constant, we will have as the unique solution of the partial-

derivative equation the following formal expression: 

 

𝑉(𝑆, 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑄[(𝑉(𝑆𝑇 , 𝑇)|𝐹𝑡)]    (10) 

 

As a result, from the equations (8), (9) and (10) we can write (Brătian, 2017): 

 

𝐶 = 𝑉(𝑆, 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑄[max ((𝑆𝑇 − 𝐸, 0)|𝐹𝑡)] , for Call   (11) 

 

𝑃 = 𝑉(𝑆, 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑄[max ((𝐸 − 𝑆𝑇 , 0)|𝐹𝑡)] , for Put  (12) 

 

In an exhaustive way, the Feynman-Kač theorem tells us that in a neutral risk universe, equation (7) 

can be written as such (Negrea, 2006, pp. 136-137): 

 

{
ℒ(𝑉) = 𝑟𝑉

𝑉(𝑆𝑇 , 𝑇) = (𝑆𝑇 − 𝐸)+     (12) 

 

where, ℒ(𝑉) is the Dynkin operator associated with the diffusion process given by the following stochastic 

differential equation: 

 

𝑑𝑉 = [
𝜕𝑉

𝑑𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2] 𝑑𝑡 + 𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝐵∗    (13) 

 

where: ℒ(𝑉) =
𝜕𝑉

𝑑𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2. 

 

As a result, the stochastic differential equation that checks the price of the option can be written 𝑑𝑉 =

 ℒ(𝑉)𝑑𝑡 +  𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝐵∗ and knowing that ℒ(𝑉) = 𝑟𝑉, then:  

 

𝑑𝑉 = 𝑟𝑉𝑑𝑡 + 𝑎(𝑆, 𝑡)𝑑𝐵∗    (14) 

 

where: 𝑎(𝑆, 𝑡) = 𝜎𝑆
𝜕𝑉

𝜕𝑆
. 

 

Equation (14) has as unique solution the following formal expression: 

𝑉(𝑆, 𝑇) = 𝑉(𝑆, 𝑡)𝑒𝑟(𝑇−𝑡) + ∫ 𝑎(𝑆, 𝑢)𝑒𝑟(𝑇−𝑡)𝑑𝐵∗𝑇

𝑡
    (15) 

⇒ 

𝑉(𝑆, 𝑡) =
𝑉(𝑆𝑇 , 𝑇) − ∫ 𝑎(𝑆, 𝑢)𝑒𝑟(𝑇−𝑡)𝑑𝐵∗𝑇

𝑡

𝑒𝑟(𝑇−𝑡)
 

⇒ 

𝑉(𝑆, 𝑡) = 𝑒−𝑟(𝑇−𝑡) [𝑉(𝑆𝑇 , 𝑇) − ∫ 𝑎(𝑆, 𝑢)𝑒𝑟(𝑇−𝑡)𝑑𝐵∗𝑇

𝑡
]  (16) 
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Then, applying, under a neutral risk probability, the operator of expectancy over the equation (16), we 

obtain: 

 

𝑉(𝑆, 𝑡) =
𝐸𝑄[𝑉(𝑆𝑇 ,𝑇)]

𝑒𝑟(𝑇−𝑡)     (17) 

 

Note: we admit that the expectation of the stochastic integral in equation (16) is null. 

 

Therefore, by substituting in the equation (17), the equation (8) or (9), we will obtain: 

 

- for Call: 
𝐸𝑄[max(𝑆𝑇−𝐸,0)]

𝑒𝑟(𝑇−𝑡)      (18) 

 

- for Put: 
𝐸𝑄[max(𝐸−𝑆𝑇 ,0)]

𝑒𝑟(𝑇−𝑡)     (19) 

 

3.2. Measuring the Entropy of Information of the Price of the Underlying Asset  

Entropy of information measures the uncertainty associated with a random variable. The higher the 

value, the greater the uncertainty. It also measures the amount of information contained in the message and is 

expressed in bits. 

Let X be a discreet random variable defined as such: 𝑋: (
𝑥1 𝑥2 … 𝑥𝑛

𝑝1 𝑝2 … 𝑝𝑛
), where 𝑝𝑖 =

𝑃(𝑋 = 𝑥𝑖); 𝑝𝑖 ∈ [0,1]; ∑ 𝑝𝑖 = 1𝑛
𝑖=1 . Then, the entropy of information of Shannon type is: 

 

𝐻(𝑋) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑛
𝑖=1     (20) 

 

If X is a continuous random variable, having the distribution density 𝑓(𝑥), then: 

 

𝐻(𝑋) = − ∫ 𝑓(𝑥)𝑙𝑜𝑔2𝑓(𝑥)𝑑𝑥
+∞

−∞
     (21) 

 

4. Evaluation of Options with Compa SA Shares Underlying Asset using the Monte Carlo 

Simulation and the Entropy of Information  

 

Next, we will empirically approach the valuation of options with non-dividend share underlying asset 

and measure the entropy of information for the price of the underlying asset, using the methodology described 

above.  

We consider the underlying asset to be the shares of Compa SA listed on the Bucharest Stock 

Exchange. For the calculation of the volatility of the underlying asset we use data on the closing price of the 

share for July 19, 2017 - August 10, 2018 and the risk-free interest rate is 3.31% (BNR, 2018a). 

Simulation of the price of Compa by the Monte Carlo method is performed starting with August 10, 

2018, using equation (6). We created 252 daily scenarios for 252 days. The values of the Call and Put options 

for a Compa SA share - underlying asset are determined at 3 months, 6 months, 9 months and 12 months. See 

in this respect Tables 1, 2, 3, 4. 

The entropy of information for the price of the underlying asset is measured annually over three years 

of trading. The values obtained are shown in Table 5.  
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Table 1. Call / Put value with 3-month maturity 

      Time s1 s2 ……… s251 s252 

CMP price - 10.08.2018 0.93 0.0000 0.9300 0.9300 ……… 0.9300 0.9300 

Drift  -0.2848 0.0040 0.9310 0.9182 ……… 0.9238 0.9370 

Volatility 0.2903 0.0079 0.9254 0.8937 ……… 0.9189 0.9377 

Time step (Δt) 0.0040 0.0119 0.9530 0.8917 ……… 0.9347 0.9100 

Risk-free interest rate 0.0331 0.0159 0.9206 0.8867 ……… 0.9261 0.9280 

Strike price (at the 

money) 

0.93 0.0198 0.8983 0.9146 ……… 0.9360 0.9253 

  

  

0.0238 0.9049 0.9375 ……… 0.9283 0.9532 

0.0278 0.9026 0.9783 ……… 0.9405 0.9575 

Value of the option: C  0.0708 0.0317 0.8897 0.9698 ……… 0.9684 0.9769 

Value of the option: P 0.0447 0.0357 0.8780 0.9835 ……… 0.9508 1.0095 

  

  

  

  

  

  

  

  

  

0.0397 0.8754 0.8754 ……… 0.9516 0.9928 

0.0437 0.8735 0.9773 ……… 0.9477 1.0072 

0.0476 0.8919 0.9531 ……… 0.9525 0.9990 

….. ….. ….. ……… ….. ….. 

0.9960 0.5544 1.0197 ……… 0.9599 0.9313 

1 0.5680 1.0358 ……… 0.9506 0.9215 

  

3 

months 

0.25 0.8804 1.246157 ……… 0.898846 0.783104 

 

  

  

  

  

  

  

  

  

CALL PAYOFF 0.0000 0.3162 
 

0.0000 0.0000 

PUT PAYOFF 0.0496 0.0000 
 

0.0312 0.1469 

  

CALL Average Payoff 0.0714   

  

 
PUT Average Payoff 0.0451  

CALL Value of the option: C  0.0708 

PUT Value of the option: P 0.0447 

Source: own calculations 

 

Table 2. Call / Put value with 6-month maturity 

      Time s1 s2 ……… s251 s252 

CMP price - 10.08.2018 0.93 0.0000 0.9300 0.9300 ……… 0.9300 0.9300 

Drift  -0.2848 0.0040 0.9310 0.9182 ……… 0.9238 0.9370 

Volatility 0.2903 0.0079 0.9254 0.8937 ……… 0.9189 0.9377 

Time step (Δt) 0.0040 0.0119 0.9530 0.8917 ……… 0.9347 0.9100 

Risk-free interest rate 0.0331 0.0159 0.9206 0.8867 ……… 0.9261 0.9280 

Strike price (at the 

money) 

0.93 0.0198 0.8983 0.9146 ……… 0.9360 0.9253 

  

  

0.0238 0.9049 0.9375 ……… 0.9283 0.9532 

0.0278 0.9026 0.9783 ……… 0.9405 0.9575 

Value of the option: C  0.0934 0.0317 0.8897 0.9698 ……… 0.9684 0.9769 

Value of the option: P 0.0633 0.0357 0.8780 0.9835 ……… 0.9508 1.0095 

  

  

  

  

  

  

  

  

  

0.0397 0.8754 0.8754 ……… 0.9516 0.9928 

0.0437 0.8735 0.9773 ……… 0.9477 1.0072 

0.0476 0.8919 0.9531 ……… 0.9525 0.9990 

….. ….. ….. ……… ….. ….. 

0.9960 0.5544 1.0197 ……… 0.9599 0.9313 

1 0.5680 1.0358 ……… 0.9506 0.9215      
  

6 months 0.5 0.8376 1.262709 ……… 0.929374 0.93227  

  

  

  

  

  

  

CALL PAYOFF 
 

0.0000 0.3327 
 

0.0000 0.0023 

PUT PAYOFF 
 

0.0924 0.0000 
 

0.0006 0.0000 

  

 

 

CALL Average Payoff 0.0949   
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PUT Average Payoff 0.0643   

  

  

  

 

CALL Value of the option: C  0.0934 

PUT Value of the option: P 0.0633 

Source: own calculations 

 

Table 3. Call / Put value with 9-month maturity 

      Time s1 s2 ……… s251 s252 

CMP price - 10.08.2018 0.93 0.0000 0.9300 0.9300 ……… 0.9300 0.9300 

Drift  -0.2848 0.0040 0.9310 0.9182 ……… 0.9238 0.9370 

Volatility 0.2903 0.0079 0.9254 0.8937 ……… 0.9189 0.9377 

Time step (Δt) 0.0040 0.0119 0.9530 0.8917 ……… 0.9347 0.9100 

Risk-free interest rate 0.0331 0.0159 0.9206 0.8867 ……… 0.9261 0.9280 

Strike price (at the 

money) 

0.93 0.0198 0.8983 0.9146 ……… 0.9360 0.9253 

  

  

0.0238 0.9049 0.9375 ……… 0.9283 0.9532 

0.0278 0.9026 0.9783 ……… 0.9405 0.9575 

Value of the option: C  0.1096 0.0317 0.8897 0.9698 ……… 0.9684 0.9769 

Value of the option: P 0.0766 0.0357 0.8780 0.9835 ……… 0.9508 1.0095 

  

  

  

  

  

  

  

  

  

0.0397 0.8754 0.8754 ……… 0.9516 0.9928 

0.0437 0.8735 0.9773 ……… 0.9477 1.0072 

0.0476 0.8919 0.9531 ……… 0.9525 0.9990 

….. ….. ….. ……… ….. ….. 

0.9960 0.5544 1.0197 ……… 0.9599 0.9313 

1 0.5680 1.0358 ……… 0.9506 0.9215      
  

9 months 0.75 0.5364 1.273412 ……… 1.108649 0.857565  

  

  

  

  

  

  

  

  

CALL PAYOFF 
 

0.0000 0.3434 
 

0.1786 0.0000 

PUT PAYOFF 
 

0.3936 0.0000 
 

0.0000 0.0724 

  

CALL Average Payoff 0.1123   

  

  

 

PUT Average Payoff 0.0785  

CALL Value of the option: C  0.1096 

PUT Value of the option: P 0.0766 

Source: own calculation 

 

Table 4. Call / Put value with 12-month maturity 

      Time s1 s2 ……… s251 s252 

CMP price - 10.08.2018 0.93 0.0000 0.9300 0.9300 ……… 0.9300 0.9300 

Drift  -0.2848 0.0040 0.9310 0.9182 ……… 0.9238 0.9370 

Volatility 0.2903 0.0079 0.9254 0.8937 ……… 0.9189 0.9377 

Time step (Δt) 0.0040 0.0119 0.9530 0.8917 ……… 0.9347 0.9100 

Risk-free interest rate 0.0331 0.0159 0.9206 0.8867 ……… 0.9261 0.9280 

Strike price (at the 

money) 

0.93 0.0198 0.8983 0.9146 ……… 0.9360 0.9253 

  

  

0.0238 0.9049 0.9375 ……… 0.9283 0.9532 

0.0278 0.9026 0.9783 ……… 0.9405 0.9575 

Value of the option: C  0.1403 0.0317 0.8897 0.9698 ……… 0.9684 0.9769 

Value of the option: P 0.0822 0.0357 0.8780 0.9835 ……… 0.9508 1.0095 

  

  

  

  

  

  

0.0397 0.8754 0.8754 ……… 0.9516 0.9928 

0.0437 0.8735 0.9773 ……… 0.9477 1.0072 

0.0476 0.8919 0.9531 ……… 0.9525 0.9990 

….. ….. ….. ……… ….. ….. 

0.9960 0.5544 1.0197 ……… 0.9599 0.9313 
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1 0.5680 1.0358 ……… 0.9506 0.9215 
     

  

12 months 1 0.5680 1.035832 ……… 0.950598 0.921524 
 

  

  

  

  

  

  

  

  

CALL PAYOFF 
 

0.0000 0.1058 
 

0.0206 0.0000 

PUT PAYOFF 
 

0.3620 0.0000 
 

0.0000 0.0085 

  

CALL Average Payoff 0.1450   

  

  

  

  

 

PUT Average Payoff 0.0850 
 

CALL Value of the option: C  0.1403 

PUT Value of the option: P 0.0822 

Source: own calculations 

 
Table 5. Shannon entropy 

No. Period Shannon entropy 

1.  24.04.2015 – 11.07.2016 5.666305 

2.  12.07.2016 – 18.07.2017 6.067939 

3.  19.07.2017 – 10.08. 2018 6.069053 

Source: own calculations 

 

5. Conclusions 

 

Following calculations, we can state the following: 

a) The value of the Call option for a quantity of an underlying asset unit of the nature of Compa SA share is 

approximately: 

- with 3-month maturity: 0.0708 monetary units (7.61% of the underlying asset on August 10, 2018); 

- with 6-month maturity: 0.0934 monetary units (10.04% of the underlying asset on August 10, 2018); 

- with 9-month maturity: 0.1096 monetary units (11.78% of the underlying asset on August 10, 2018); 

- with 12-month maturity: 0.1403 monetary units (15.08% of the underlying asset on August 10, 2018). 

 

b) The value of the Put option for a quantity of an underlying asset unit of the nature of Compa SA share is 

approximately: 

- with 3-month maturity: 0.0447 monetary units (4.80% of the underlying asset on August 10, 2018); 

- with 6-month maturity: 0.0633 monetary units (6.80% of the underlying asset on August 10, 2018); 

- with 9-month maturity: 0.0766 monetary units (8.24% of the underlying asset on August 10, 2018); 

- with 12-month maturity: 0.0822 monetary units (8.84% of the underlying asset on August 10, 2018). 

 

c) The annual entropy of information for the underlying asset price is: 5,666305 for the period 24.04.2015 - 

11.07.2016; 6,067939 for the period 12.07.2016 - 18.07.2017; 6,069053 for the period 19.07.2017 - 

10.08.2018. An increase in uncertainty is observed dynamically. 
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