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Editor’s Introduction to Volume 2, Issue 3 of 

Expert Journal of Economics 
 

 

 

Simona VINEREAN* 
 

  Sprint Investify 

 

 

 

In this third issue of the second volume of Expert Journal of Economics, we gathered various 

interesting articles exploring the effect of nonzero autocorrelation coefficients on the sampling distributions, 

the premises of the modern market economy, the analysis of consumer behavior in the process of search and 

increased wage, and the repercussions of the measurement errors in misleading results in the estimation of 

various population parameters. We are appreciative of the opportunity to publish such meaningful 

contributions to economics knowledge. Further, I present a short description of each article that is published 

in Expert Journal of Economics, vol. 2, issue 3. 

 

In The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test 

Estimator: Three Autoregressive Models, Mei-Yu Lee (2014) discovers three interesting results for the 

application of a serial correlation test for an example of Durbin-Watson test estimator when the errors have 

nonzero autocorrelation coefficient in first-order autoregressive model. The author also compares three 

models to show the effect of nonzero autocorrelation coefficients on the sampling distributions of the d 

statistic. 

  

Dominique and Rivera-Solis (2014), in their paper entitled On Market Economies: How 

Controllable Constructs Become Complex study the premises of the modern market economy from different 

perspectives. Firstly, the authors review the Walrasian pure exchange (WPE) model and a controllable linear 

time invariant (LTI) model. This research shows that the Walrasian pure exchange economy does not fully 

exhibit the complexities of areal market economies. Secondly, they explore two solution concepts in the 

theory of robust and optimal control of nonlinear systems based on the Hamilton-Jacobi Equations. The 

article further explores the new advances in affine and non-affine nonlinear feedback H-infinity control 

theory and shows that empirical verifications are difficult to achieve due to the lack of proper metrics and the 

data requirements.  

 

In his paper Willingness to Overpay for Insurance and for Consumer Credit: Search and Risk 

Behavior Under Price Dispersion, Sergey Malakhov (2014) analyses consumer behavior in terms of the 

methodological power of relative values that appear in the process of search. The author discusses the 

instability of the equilibrium in the saddle point that occurs when a consumer’s wage increase leads to his / 

her motivation to reduce the search time and to increase the quality of the goods. Further, the author 

elaborates on the Veblen effect and the satisficing path where consumers should take risks, and considers the 

economic implications of giving or family altruism. The model proposed in this research also encompasses 

risk aversion and optimum quantity of money. Moreover, the model also could be used for the examination 

of the optimal taxation.  
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Ouko, Kipkoech, and Kirimi’s (2014) article entitled Effects of Measurement Errors on Population 

Estimates from Samples Generated from a Stratified Population through Systematic Sampling Technique 

studies how the presence of measurement errors has led to misleading results in estimation of various 

population parameters. This paper shows how the effects of measurement errors on estimates of population 

total and population variance when the samples of the research are drawn using systematic sampling 

technique from a stratified population. The results of this research indicate that systematic errors have an 

effect on the accuracy of the estimates by overestimating both the population total and the population 

variance.  
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The Effect of Nonzero Autocorrelation Coefficients on the Distributions of 
Durbin-Watson Test Estimator: Three Autoregressive Models 

 
 
 

Mei-Yu LEE* 
 

Yuanpei University, Taiwan 
 
 
 
This paper investigates the effect of the nonzero autocorrelation coefficients on the 
sampling distributions of the Durbin-Watson test estimator in three time-series 
models that have different variance-covariance matrix assumption, separately. We 
show that the expected values and variances of the Durbin-Watson test estimator 
are slightly different, but the skewed and kurtosis coefficients are considerably 
different among three models. The shapes of four coefficients are similar between 
the Durbin-Watson model and our benchmark model, but are not the same with the 
autoregressive model cut by one-lagged period. Second, the large sample case 
shows that the three models have the same expected values, however, the 
autoregressive model cut by one-lagged period explores different shapes of 
variance, skewed and kurtosis coefficients from the other two models. This implies 
that the large samples lead to the same expected values, 2(1 – ρ0), whatever the 
variance-covariance matrix of the errors is assumed. Finally, comparing with the 
two sample cases, the shape of each coefficient is almost the same, moreover, the 
autocorrelation coefficients are negatively related with expected values, are 
inverted-U related with variances, are cubic related with skewed coefficients, and 
are U related with kurtosis coefficients.   
 
Keywords: Nonzero autocorrelation coefficient, the d statistic, serial correlation, 
autoregressive model, time series analysis 
 
JEL Classification: C32, C15, C52 

 
 
 

1. Introduction 
 
Serial correlation has the most important role in autoregressive models, which is based on the 

regression analysis. If the data has serial correlation, then the researchers have to pay attention to it and use 
the correct variance-covariance matrix for estimation and forecasting. However, Lee (2014a) indicates the 
reasons of the difference between the errors and the residuals in regression analysis where 0εX =ˆT  is its 
internal constraint for the residuals, that is also affected by the values of the independent variables. Another 
one important factor is degree of freedom which constraints the relationship of sample size and the number 
of independent variables. Lee found that 0εX =ˆT  is very important when the degree of freedom is not very 
large in the regression analysis, thus, the autoregressive model will have to pay considerable attention on the 
above factors when the researchers use the serial correlation test estimator. Lee (2014b) also discusses the Z 
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test that can be used in the serial correlation test of the d statistic when the degree of freedom is larger than 
50. In that paper, Lee investigated the effects of the factors, including the variances of the errors, the values 
of the independent variables, on the distributions of the d statistic. Therefore, we do not repeat the 
investigations in this paper.   

Due to the internal constraint and degree of freedom, we use three models, including Durbin-Watson 
model (Durbin and Watson, 1950, 1951), the common autoregressive model, and autoregressive model with 
one-lagged period, AR(1) model, (Savin and White, 1978), to discuss the effect of nonzero autocorrelation 
coefficients on the distributions of the Durbin-Watson test estimator, the d statistic. The reason we choose 
the d statistic is that its formula is the combination of the residuals and no one researches from the viewpoint 
of the degrees of freedom. In fact, the Durbin-Watson model has unfixed variance-covariance matrix, and the 
AR(1) model is restricted in the range from -0.5 to 0.5. We intend to show the differences from the 
distributions of the d statistic among three models, and to compare the coefficients of the d statistic between 
any two models. 

This paper complements and explains if the null hypothesis is the nonzero autocorrelation 
coefficients, H0: ρ = ρ0, ρ0 ≠ 0, then how the distributions of the d statistic will become and what are the 
differences among three models. We show that the three models have the same autocorrelation coefficients 
as the null hypothesis in the robust analysis, but in the small samples, the three models have different 
distributions of the d statistic. It is worthy noting that the importance of the null hypothesis with the nonzero 
autocorrelation coefficient. When the researchers can know the data of the exactly autocorrelation 
coefficient, they can accurately forecast and judge the future. Even the critical value table can be built 
without neglecting the properties of the errors and the values of the independent variables. The structure of 
the paper is as follows. Section 2 describes the three model settings and the simulation procedure. Section 3 
explores our simulation results that have (1) the patterns of four coefficients among three models when the 
sample is 57 and the number of independent variables is 6, and (2) the patterns of four coefficients between 
any two models when the sample is 1000 and the number of independent variables is 6. Section 4 presents 
the conclusions and discussion of the results.    

 
2. The model 
 
Consider a linear regression model with k regressors and T sample sizes, as 
 
  Y

(T×1)
= X

(T×k)
B

(k×1)
+ e

(T×1)
 

 
Each εt is the error matrix, e, and satisfied with three conditions that are  
 
(i) εt is i.i.d. Normal distribution. 
(ii)  E(εt) = 0 and Var(εt) = σ2 for all t. 
(iii)  E(εt × εt-1) = 0 and E(εi × εj) = 0, |i – j| > 1, for all t and i, j = 1, 2, …, T. 
 
Y = X B + e is constrained by E(e) = 0 and E(XTe) = 0. Use OLS and get the estimator of 

coefficients, ̂B = (XTX)-1 XTY , due to the constraint of XTe= 0. Thus the residuals are  = (I – X(XTX)-

1XT)ε, which is satisfied with  E() = 0 and  XT = 0 and the degree of freedom being T-p-1. The sum of 
square residuals will be  

 

E( ) = σ2(I – X(XTX)-1XT)                                                                       (1) 
 
The condition (iii) guarantees the errors are independent from each other. However, the serial 

correlation model has broken condition (iii). In order to test the extensibility of the d statistic in the serial 
correlation models, the models are that 

� Model A is the Durbin-Watson model introduced by Durbin and Watson in 1950. 
� Model B is the serial correlation model in common. This is also the benchmark model. 
� Model C is the autoregressive error procedure with one lagged period.   
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2.1. Model A 
 
The serial correlative condition of Model A is εt+1 = ρεt + µt+1, where t = 0, 1, …, T-1, ρ is population 

autocorrelation coefficient of εt+1 and εt, µt+1 is i.i.d. Normal distribution with E(µt+1) = 0 and Var(µt+1) = σ2 
for all t. The specialist property of Model A is the unfixed variance of the error when t increases, that is,  
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where ρ(εt, εt+1) is the sample autocorrelation coefficient. If t approaches to infinite, then Var(εt) = σ2  

/ (1 – ρ2), E(εt � εt+1) = ρ Var(εt) and ρ(εt, εt+1) = ρ (see the proofs in Appendix I). 
 
2.2. Model B 
 
The serial correlation condition in Model B is εt+1 = ρεt + µt+1, where E(εt � εt+1) =ρσ2, t = 1, 2, …, 

T-1, thus, µt+1 is i.i.d. Normal distribution with E(µt+1) = 0 and Var(µt+1) = (1 – ρ2) σ2 for all t. This serial 
correlation condition indicates the conditional εt+1 on εt is Normal distribution with E(εt+1 | εt) = ρεt and 
Var(εt+1 | εt) = (1 – ρ2) σ2. Therefore, the variance-covariance matrix is 

 

,  

 
The special property of Model B is  
 

( ) 2

1 σρεε ×=× +tt
E , 

( ) ρ
σσ

σρεερ =
×

×=+ 22

2

1,
tt . 

 
2.3. Model C 
 
The serial correlation condition in Model C is εt+1 = ρεt + µt+1, where E(εt � εt+1) = ρσ2, t = 1, 2, …, 

T-1, and E(εt � εt+j) = 0, j > 1. Thus, the variance-covariance matrix is 
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It should be noted that the autocorrelation coefficients cannot be more than 0.5 and less than -0.5, or 

the model would be flawed. 
 
2.4. The Durbin-Watson test 
 
As to ρ = 0, the three models become one model where the errors i.i.d. Normal distribution with E(εt) 

= 0 and Var(εt) = σ2. Thus, the joint probability density function of the errors is 
 

 

 
where – ∞ < εt < ∞ and t = 1, 2,…,T, and then those residuals that are calculated from the Original 

Least Square (OLS) method will be also restricted by the internal constraint,  XT = 0. The DW test statistic 
is not noised by σ2. Unfortunately, the lack of discussions of the d statistic is not only property of central 
limited theorem, that has been discussed by Lee (2014b), but also the effect of nonzero autocorrelation 
coefficients on the distributions of the d statistic which has different variance-covariance matrices in three 
models. As to the hypotheses, H0: ρ = ρ0 and H1: ρ ≠ ρ0, the joint probability density function is 

 

, 

 

where Σ = E( ) and – ∞ < εt < ∞ and t = 1, 2,…, T.  
Durbin and Watson (1950, 1951) build the d statistic for testing the serial correlation of the data 

when the null hypothesis is a zero autocorrelation coefficient. The d statistic is 
 

DW =
ε̂t − ε̂t+1( )2

t=1

T−1

∑

ε̂t
2

t=1

T

∑
 

 

where ε̂t = Yt −Ŷt . However, the mathematical transformations of joint probability density functions, 

from the errors to the residuals and from the residuals to the d statistic, are not 1-1 relation and cannot find 
the jocabian functions, that is, 

 

f ε̂1,...,ε̂T−1( ) = f ε1,...,εT( ) ×
∂ ε1,...,εT( )
∂ ε̂1,...,ε̂T−1( )

, 

and 

DW = f ε̂1,...,ε̂T−1( ) ×
∂ ε̂1,...,ε̂T−1( )

∂ DW( )
. 
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Because the exactly sampling distributions of the d statistic cannot be found, the computer 
simulation is needed whatever the autocorrelation coefficient is zero or nonzero. 

 
3. Simulation procedure 
 
The computations are performed in C++ on Intel Core i7 desktop. In order to control the internal 

constraint of regression and to derive the probability density functions of the d statistic, we use a new 
simulation process based on random number method to overcome the problems of probability 
transformation. †  Thus, the Durbin-Watson test estimator can be simulated under null hypothesis, H0: ρ = ρ0, 
where ρ0 ≠ 0. The computer repeats 216 calculations per time to get 216 values of the Durbin-Watson test. The 
research method is as followed. 

Step 1: Give the intercept and slope value, β0 = β1 = β2 =…= βk = 0, and the data set of independent 
variables. 

Step 2: Get the error data set of normal distribution which sample size is T. Here, the error value is 
independently. 

Step 3: According to the linear regression model setting and computing the data set of dependent 
variable, Y = XB + ε. 

Step 4: Calculate the point-estimated values of regression coefficient and getting the estimated 
values of dependent variable, BXY ˆˆ = . 

Step 5: Calculate the data set of residual, . 
Step 6: Get the value of the d statistic.  

 
Every time generate 216 values by repeating Step 2 to Step 6. Those values can generate a frequency 

table and then calculate the sampling distributions and coefficients. Because 216 values per time is large 
enough, the sampling distributions of the d statistic can be viewed as population distributions. The error of 
coefficients between real value and estimated value is from 1/1000 to 1/10000. 

When the sampling distributions of the d statistic are generated, the computer calculates the means, 
variances, skewedness, and kurtosis coefficients. The skewedness and kurtosis coefficients can ensure more 
whether the sampling distributions of the d statistic are Normal distribution or not in the three models. The 
paper defines the coefficients of the d statistic as  

� ρ = X1 is the autocorrelation coefficient of the errors. 
� E(DW) = X2 is the mean of the d statistic. 
� Var(DW) = X3 is the variance of the d statistic. 
� σ(DW) = X4 is the standard deviation of the d statistic. 
� γ1(DW) = X5 is the skewedness of the d statistic. 
� γ2(DW) = X6 is the kurtosis of the d statistic. 
 
4. Simulation results 
 
First, the computer calculation depends on the values of independent variables (Appendix II), 6 

regressors, the variance and autocorrelation coefficients of the errors. The sampling distributions of the d 
statistic have four coefficients which are patterned by the autocorrelation coefficients of the errors from -0.99 
to 0.99 for Model A and Model B, and form -0.49 to 0.49 for Model C, as shown in Table 1. The small 
sample case, T = 57, shows the effect of the autocorrelation coefficient on the coefficients of the sampling 
distributions of the d statistic. 

 
 

Table 1. The extreme values of the coefficients of in three models when the autocorrelation coefficient is nonzero (T 
= 57, k =6) 

  X2 X3 X4 X5 X6 

Model A Max 3.659836288 0.066942063 0.258731643 0.775942865 5.882692292 

 Min 0.496834365 0.020959918 0.144775404 -1.447411589 2.897774026 

                                                           
† The software of Durbin-Watson test is provided by C.C.C. Ltd. The software of Durbin-Watson test model (Model B) is available online on the 
website: https://www.facebook.com/pages/Welsh-Corgi-Program/606775822740593. The traditional Durbin-Watson test model is based on Imhof 
(1960) and Pan (1968). 
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Model B Max 3.680587671 0.066940095 0.258727839 0.806132468 7.191216908 
 Min 0.492612374 0.01518781 0.123238833 -1.736253752 2.896743261 

Model C Max 2.807037254 0.066956001 0.258758576 0.230931679 3.039399415 
 Min 1.168332061 0.039141875 0.197843058 -0.237106198 2.898300265 

 
Table 1 illustrates the maximum and minimum of five coefficients in three models. By comparison 

of Model A and B, two models have the same minimum of E(DW), maximum of Var(DW) and σ(DW), but 
slightly different maximum of E(DW), minimum of Var(DW) and σ(DW). Moreover, Model B is more 
positive-skewed and centralized than Model A. However, Model C has the most extreme differences of 
E(DW), γ1(DW) and γ2(DW) than Model A and Model B, except for maximum of Var(DW) and σ(DW). 

Although Table 1 shows the five coefficients of the d statistic, we still do not know the effect of 
autocorrelation coefficients on the sampling distribution of the d statistic. Therefore, Table 2 illustrates the 
plots of four coefficients where the vertical axis is E(DW), Var(DW), γ1(DW) and γ2(DW), separately, and 
the horizontal axis represents the autocorrelation coefficients. Those plots assist us to investigate whether the 
d statistic is Normal distribution and how the autocorrelation coefficients affect the sampling distribution of 
the d statistic. As to the whole range of ρ in three models, E(DW) is negatively and linearly related with ρ. 
This implies that dE(DW) / dρ < 0. The plot of E(DW) also passes through around 2.0028 (Model A and B) 
and 2.0027 (Model C) as ρ = 0. The reason is that the negative ρ causes the errors and the residuals to 
fluctuate up and down from t to t + 1 period, however, the positive ρ leads to one and fixed direction for the 
errors and residuals. Second, Var(DW) is an inverted-U shape. This implies that the higher the |ρ| is, the 
lower the Var(DW) is. However, the maximum of Var(DW) occurs at ρ = 0.02 in Model A, at ρ = 0.01 in 
Model B and at ρ = -0.01 in Model C. This also shows that the maximum of Var(DW) is not at ρ = 0. This is 
because the different assumption of variance-covariance matrix. From the view of E(DW) and Var(DW), 
E(DW) cannot be used to derive Var(DW) because the linear relationship cannot represent the U-shape 
relationship, especially when the autocorrelation coefficient is nonzero. 

Table 2 also illustrates the plots of the skewed and kurtosis coefficients. The plots of skewed 
coefficient are cubic shape which shows the higher the ρ is, the higher the skewed coefficient is. The skewed 
coefficients are positive when ρ > 0. Model C has considerable shape of skewed coefficients by comparison 
with Model A and Model B. Although the kurtosis coefficient is 2.8978 in Model A, 2.8975 in Model B, and 
208990 in Model C when ρ = 0, the minimum of the kurtosis coefficient occurs in ρ = 0.01 in three models. 
If |ρ| becomes larger than 0.01, the kurtosis coefficient increases, in particular, the higher the negative ρ is, 
the higher the kurtosis coefficient is in Model A and Model B. The plots show that the assumptions of Model 
B lead to the higher kurtosis coefficient than Model A when |ρ| becomes larger and close to higher relation. 
We also find that the kurtosis coefficient is larger than 3 when ρ ≤ -0.37 in three models, but occurs when ρ 
> 0.39 in Model B and Model C, and when ρ > 0.38 in Model A.  

Thus, we can obtain the proposition as follows. 
 
Proposition 1. 
(1) dE(DW) / dρ < 0. When ρ = 0, E(DW) = 2.00 accurate to the second decimal place. 
(2) When ρ ≤ 0, dVar(DW) / dρ > 0 and dVar(DW) / dρ < 0 when ρ > 0. The second-order 

condition is d2Var(DW) / dρ2 < 0. 
(3) dγ1(DW) / dρ > 0. When ρ = 0, γ1(DW) = -0.00 accurate to the second decimal place.  
(4) When ρ ≤ 0, dγ2(DW) / dρ < 0 and dγ2(DW) / dρ > 0 when ρ > 0. The second-order condition is 

d2γ2(DW) / dρ2 > 0. 
 
In the small sample case, the assumptions of E(εt × εt+1) and the variance- covariance matrix leads to 

the differences among three models when the samples and the number of regressors are the same. This is 
because Model B has the fixed variance in the assumption of first-order autoregressive errors, meanwhile, 
Model C is based on the only one-lagged period effect on the errors. The four coefficients in three models 
show that the sampling distributions of the d statistic are not Normal distribution in the range of ρ. One 
reason is from Lee (2014a, 2014b), other reason is that nonzero ρ disturbs the errors, the residuals, its 
mathematical combination and the variance-covariance matrix, thus, the d statistic cannot display a Normal 
distribution. 
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Table 2. The coefficients in three models when the autocorrelation coefficient is nonzero (T = 57, k =6) 
 Model A Model B Model C 

X2 

   
X3 

   
X5 

   
X6 

 
 

 
 

 

 
Due to the relationship of each coefficient and ρ in Table 2, we can estimate each coefficient of the d 

statistic by the autocorrelation coefficients, that is, regress each coefficient on ρ by curve-linear regression 
method, which is based on the Taylor expansion function, in Table 3. The horizontal axis is the values of ρ 
and the vertical axis is the values of each coefficient. It is noted that the three models indicate that the d 
statistic is asymmetric at 2 and has significant difference in γ1(DW) and γ2(DW), in particular, when the null 
hypothesis is H0: ρ = ρ0.  

 
Table 3. The estimation of each coefficient in three models when the autocorrelation coefficient is nonzero 

Symbol Model A Model B Model C 
X2 

   
X3 
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X5 

   
X6 

   
 

The Appendix III illustrates the residual plots of each coefficient after estimation. The residual plots 
show that the model setting leads to the different effect of ρ on the coefficients of the d statistic, even the 
shapes of each coefficient are as similar as possible. Moreover, Model A and Model B have similar 
coefficients, but the residual plots are considerably different with each coefficient. The special variance-
covariance matrix assumption leads to the residual plot of Model C different from others. Due to the 
considerable paths of coefficients as a change of autocorrelation coefficients, the d statistic is still sensitive 
and is used for hypothesis testing in three models when the null hypothesis is H0: ρ = ρ0. 

 
4.1. Robust analysis 
 
When the samples are large enough, the three models have the same sampling autocorrelation 

coefficient, ρ(εt, εt+1) = ρ, however, have different values of E(εt × εt-1), that is, 
 

E(εt,εt+1) =
ρσ 2

1− ρ2
,Model A

ρσ 2 ,Model B, C










. 

 
Thus, the zero autocorrelation coefficient leads to ρ(εt, εt+1) = ρ(εt, εt+1) = 0 in the three models. If the 

null hypothesis is nonzero autocorrelation coefficient, H0: ρ = ρ0, and T is infinite, then  
 
E(DW) = 2 (1 – ρ0).                                                          (2) 
 
The expected values of the d statistic is a constant value away from 2 means that k has no impact on 

the robust means of the d statistic whatever the autocorrelation coefficient is. Furthermore, E(DW) is 
negatively and linear related with ρ0 as shown in (2). However, E(DW) insufficiently represents the 
information of the sampling distributions of the d statistic when T is large enough. The second to fourth rows 
of Table 4 illustrate the effect of the higher moments on the sampling distributions of the d statistic. The 
second row shows that Model A and Model B have the same shape of variance, but are different from Model 
C. moreover, Var(DW) is affected considerably by the positive autocorrelation coefficient in Model A and 
by the negative autocorrelation coefficient in Model B. We also find that the higher the |ρ| is, the larger the 
difference between Model A and Model C (Model B and Model C) is. 

The third row illustrates that the higher positive ρ leads to that (1) the skewed coefficients of Model 
A are larger than that of Model B and (2) there is a larger difference from the γ1(DW) of Model A (or Model 
B) minus the γ1(DW) of Model C. However, the larger negative ρ induces in the larger difference from 
γ1(DW) of Model C minus γ1(DW) of Model A (or Model B). We also can find that  

 
dγ1(DW)

dρ
≥ 0 . 
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The fourth row illustrates that the smallest values of γ2(DW) occurs in ρ = 0. When the |ρ| becomes 
larger, γ2(DW) increases in the three models, in particular, the pattern of γ2(DW) has a kinked point at ρ 
=0.1. The relationship between γ2(DW) and ρ is 

 

dγ2(DW)

dρ
> 0 ,if ρ < 0

< 0 ,if ρ > 0






, 

 
and 
 

dγ2
2(DW)

dρ2
< 0 . 

 
Table 4. The comparison of the changes between three models’ coefficients and autocorrelation coefficient (T =1000 

and k =6) 
 Model A vs Model B Model A vs Model C Model B vs Model C 

E(DW) 

   

Var(DW) 

 
  

skewness 

   
kurtosis 

   
 

Comparing with Table 2 and 4, the sampling distributions of the d statistic have the following 
properties. 

 
Proposition 2. At small and large sample cases, 
(1) E(DW) passes through 2 when null hypothesis is ρ = 0 in three models. 
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(2) E(DW) is negatively and linearly related with ρ in three models 
(3) Var(DW) is inverted-U related with ρ in three models. 
(4) Model A and B have the same shape of Var(DW), γ1(DW) and γ2(DW), that are different from 

Model C. 
 
 Table 4 also shows that the sampling distribution of the d statistic in three models is a Normal 

distribution with E(DW) = 2 due to γ1(DW) = 0 and γ2(DW) = 3. This is an evidence of Durbin and Watson 
(1950, 1951) when the samples are large enough. The second property is that the higher the positive ρ is, the 
more positive-skewed the sampling distributions of the d statistic are. The small sample case in Table 3 
explains that the different variance-covariance matrix assumption affect the effect of the autocorrelation 
coefficient on the sampling distributions of the d statistic, that have different expected values and other 
coefficients as shown in Table 1, 2 and 3. When the samples become large, Table 4 shows the same expected 
value, variance and skewed coefficients among three models even through the kurtosis coefficient is a little 
bit different among the three models. Therefore, the large samples can eliminate the variance-covariance 
matrix assumption and lead the three models to become one model. 

 
5. Conclusions 
 
The paper runs computer simulation of serial correlation test for an example of Durbin-Watson test 

estimator when the errors have nonzero autocorrelation coefficient in first-order autoregressive model. We 
try to compare three models to show the effect of nonzero autocorrelation coefficients on the sampling 
distributions of the d statistic.  

The results can be divided with three parts. The first result is from the viewpoint of the sample size. 
We find that whatever the sample size is, the expected values, variances, skewed and kurtosis coefficients 
have the same patterns of the autocorrelation coefficients in three models, separately, but part of values are 
not the same. We also find that the assumptions of variance-covariance matrix can be eliminated by the 
increasing samples, therefore, the sampling distributions of the d statistic have the same expected values in 
three models whatever the autocorrelation coefficients are. This result implies that in the long run, three time 
series models have the same expected values, 2(1 – ρ0), that are different from the small sample case due to 
the expected values of Model C. 

The second result is from the view of the null hypothesis with zero autocorrelation coefficient. We 
show that the higher the positive autocorrelation coefficient is, the lower expected values and variances of 
the d statistic are, but the higher the skewed and kurtosis coefficients are. There are reversed results in the 
situation of the negative autocorrelation coefficients. The third result is from the perspective of whole 
patterns of each coefficient. We shows that the autocorrelation coefficients are negatively and linearly 
related with expected values, inverted-U related with variances, cubic related with skewed coefficients and 
U-quadratic related with kurtosis coefficients when the autocorrelation coefficient is from the minimum to 
the maximum in three models whatever the samples are. The three results can supplement the literatures 
about the serial correlation test for an example of the sampling distributions of the d statistic. 
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Appendix I 
 
The model of Durbin and Watson (1950) is shown in section 2. Based on εt+1 = ρ ×εt + µt+1 and 

ε0 = 0 , the first error is ε1 = µ1 and then substitute into εt+1 = ρ ×εt + µt+1 and obtain the second error, 

ε2 = ρ ×ε1 + µ2,E ε2( ) = 0,Var ε2( ) = 1+ ρ2( ) ×σ 2
. 

 

Thus, E ε1 ×ε2( ) = ρ ×σ 2  and the sampling autocorrelation coefficient of the first and second errors 

is 
 

ρ ε1,ε2( ) = ρ
1+ ρ2( )

. 

 
Following the same calculated step, we can derive that  
 

ε3 = ρ ×ε2 + µ3 = ρ2 × µ1 + ρ × µ2 + µ3,

E ε3( ) = 0,Var ε2( ) = 1+ ρ2 + ρ 4( ) ×σ 2,E ε2 ×ε3( ) = ρ × 1+ ρ2( ) ×σ 2,

ρ ε2,ε3( ) =
1+ ρ2( )

1+ ρ2( ) × 1+ ρ2 + ρ4( )
,

ε4 = ρ ×ε3 + µ4 = ρ3 × µ1 + ρ2 × µ2 + ρ × µ3 + µ4,

E ε3( ) = 0,Var ε2( ) = 1+ ρ2 + ρ 4 + ρ6( ) ×σ 2,E ε3 ×ε4( ) = ρ × 1+ ρ2 + ρ 4( ) ×σ 2,

ρ ε2,ε3( ) =
1+ ρ2 + ρ4( )

1+ ρ2 + ρ4( ) × 1+ ρ2 + ρ 4 + ρ6( )
,

 

 
Thus, the t+1th error is that    
 

εt+1 = ρ ×εt + µt+1 = ρ t+1− j × µ j( )
j=1

t+1

∑ ,t = 0,1,2,....,T −1,

E εt+1( ) = 0,Var εt+1( ) = ρ2( )t+1− j( )
j=1

t+1

∑








×σ 2,

E εt ×εt+1( ) = ρ × ρ2( )t+1− j( )
j=1

t

∑








×σ 2,

ρ εt,εt+1( ) =
ρ × ρ2( )t+1− j( )

j=1

t

∑










ρ2( )t+1− j
× µ j( )

j=1

t

∑ × ρ2( )t+1− j
× µ j( )

j=1

t+1

∑










 

 
If t becomes infinite, then  
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Var εt( ) = σ 2

1− ρ2( ) ,

E εt ×εt+1( ) = ρ × σ 2

1− ρ2( ) ,

ρ εt,εt+1( ) = ρ

 

 
Appendix II 
 
The values of independent variables are as follows. 
                 X1                                       X2                               X3                              X4                                 X5                          X6        

  1 :        8.3942796673,        5.9743248114,       10.5433072070,        4.4919705977,        3.4547532369,        0.3660935162, 

  2 :       11.0926182469,        8.5865059254,        6.3276410268,        2.3013060649,        1.4194860328,        1.2979850825, 

  3 :       11.5956287654,        4.1842520567,        7.5754211833,        8.8748009076,        9.2966283694,        9.9319530606, 

  4 :        5.1294293068,       -2.0229243067,       -3.7205994925,       -1.9710922902,       -2.1071922389,       -3.9631068919, 

  5 :       10.0930459757,        2.9087056925,       -1.2463797401,       -1.6367202069,       -1.3437181198,       -2.4391750503, 

  6 :       10.7591584850,        6.2449255029,        1.9952881995,       -1.5751044802,       -2.6548128155,       -1.4225324227, 

  7 :       11.6389242060,        9.8559733690,       19.6769166275,       20.4092287951,       21.7139250496,       21.3941172645, 

  8 :        8.9339369321,        9.6674110044,        6.7274054640,        6.5328385454,        5.6853699385,        5.5179365070, 

  9 :        9.9655867410,        3.0860552350,        3.3136013263,        1.7862885234,        2.9068953205,        2.7189989340, 

 10 :       13.8544611999,       10.0577880915,        3.5409810319,       -1.4431102299,       -1.8569863686,       -4.1283708796, 

 11 :        8.7572543061,        1.5409028398,        3.3691779308,        3.6215888116,        4.1015402009,        1.6426980000, 

 12 :       11.4333746774,        8.2238421572,        3.8054267172,        7.5846859124,        7.0073612155,        6.0419247516, 

 13 :        7.7931279457,        9.7999622586,       13.7500226003,       18.0159218476,       18.5204442419,       19.6681100550, 

 14 :       10.2407183608,       12.0302431166,       21.5510469818,       24.0161513894,       23.9080548620,       22.8212635916, 

 15 :       14.3323237799,        9.4305408181,       10.6476934619,       10.1736825488,       11.1187329437,       11.5326224000, 

 16 :        9.2031646401,       10.3699880329,       13.4563031661,       17.1566859980,       17.1761252852,       18.7154800011, 

 17 :        9.6889534618,       18.4917329222,       20.2756938987,       21.1204395704,       19.5081788708,       19.1797324594, 

 18 :       11.7050955005,        9.2397083531,       15.1044690444,       14.1883861443,       12.3015307628,       15.4676571064, 

 19 :        9.1971260006,        9.7093882312,        8.0743237967,       10.1626439416,        9.9055454481,        7.9878593242, 

 20 :       11.6707749148,       10.4567343750,        5.4346885708,       -0.9926995759,       -0.2580358331,       -0.7226713447, 

 21 :       11.0084985964,       12.7098983514,        6.8381258406,        4.2922825990,        5.9724619693,        9.0484380444, 

 22 :       10.4393336651,       20.4063934575,       28.1712423189,       25.2106896922,       27.0691680197,       24.3148963415, 

 23 :        9.2754712315,        8.4469984069,       11.1884566405,       16.2975452059,       15.6140416028,       16.8164249462, 

 24 :       11.0956560003,       19.5079769882,       25.0650104995,       33.9560034171,       33.8813717485,       31.1591859967, 

 25 :       10.0791634122,       16.6823583643,       11.4975529785,        3.6802821135,        3.6446917006,       -1.5133543254, 

 26 :        8.3487204240,        7.3381429614,        6.1028497337,       10.1956370626,        7.8041414071,        6.1380528833, 

 27 :        6.8463525509,        8.3279194586,       13.8199774185,       12.8437508964,       10.8282376376,        8.8860080326, 

 28 :       10.2020988906,       27.1915803537,       27.5917133148,       29.9451507344,       28.9996646890,       29.0885852288, 

 29 :       11.1117713869,       11.2269060716,        3.5639405330,       -3.5779110472,       -2.6505471172,       -2.4333384008, 

 30 :       12.0664318754,       16.8006310885,       12.7379497272,       13.1094040242,       14.5127143598,       19.0237276954, 

 31 :       14.1141812980,       14.8284107479,       19.3868646899,       16.6036456738,       16.3620462244,       15.8977919007, 

 32 :       14.4138413029,       19.1844447867,       24.2918371048,       29.4721002588,       30.1116915480,       32.1152744433, 

 33 :       13.3645790169,        9.4110987477,       11.5351840149,       16.2980802028,       16.3960191979,       10.9799564480, 

 34 :        9.5655683954,        4.8458408500,       -0.5970340237,       -5.1658276064,       -3.2146578374,       -1.0457040390, 

 35 :       11.5832033625,       12.2463389796,       16.8335732809,       12.3957409976,       12.6831959365,       11.3378073349, 

 36 :        9.6500026201,       18.1501333618,       20.0768361023,       26.4200908540,       26.6705510566,       26.4265966911, 

 37 :       12.3330653338,       13.0854669917,       10.3700300441,        3.1991677444,        3.3954099265,        2.7978941630, 

 38 :        8.6508259080,        7.4336577229,        3.3471939688,       -5.6158892589,       -5.7818123740,       -9.0915191233, 

 39 :        4.5136304186,       12.2936868514,       11.2979665482,       -4.2015056613,       -4.3902967105,        0.3980143565, 

 40 :        9.8912177478,        8.4305240403,        5.5554726620,        2.9828278842,        2.9390925524,        2.0756327884, 

 41 :       10.5036288232,        7.2971005321,        6.5609778313,        4.1186668666,        6.6299078094,        5.0101628919, 

 42 :       11.5565815704,        8.4932003482,       13.4741026052,       12.2157823319,       12.5357982707,       13.2931521944, 

 43 :        9.0099119726,        8.7630513853,        8.6233918610,       21.5107027433,       21.2282336352,       21.0894539511, 

 44 :        7.5743427980,       14.2064111846,        9.6177663912,       14.9992214910,       14.1796342689,       13.9101853988, 

 45 :       11.6365114336,        6.9482916849,        9.2461095245,       10.7606715127,       13.7441068642,       12.3564493977, 

 46 :       11.1134974482,       13.0029282291,       17.7683519485,       10.2323919463,        9.4664227563,       10.6690435813, 

 47 :       10.3679908394,        7.5178716331,        6.9816044043,        5.0161344127,        4.0434035535,        6.9792018302, 

 48 :        7.9550202448,        7.9756557376,       16.6152281740,       12.9908386728,       12.8983318498,       13.2096870593, 

 49 :        9.8991655726,       10.0250753674,        1.0786738992,       10.1037433773,       10.7185910088,       12.5231682908, 

 50 :       13.3109816579,       13.0867379409,       16.2703335687,        6.9847587587,        7.2106934802,        6.7330443978, 

 51 :       10.6629372996,       20.0562925451,       18.1713161972,       25.4100266454,       26.7295197714,       30.9814884118, 

 52 :        9.8145247150,        6.1691472249,       10.8781016015,       15.9769454371,       15.0685888697,       13.9958726602, 

 53 :        9.4802865631,       12.5350409185,       13.4437574182,       12.5934461630,       14.2171197996,       15.6588514033, 

 54 :       10.6029033874,       15.0919249001,       17.3438740646,       19.9795003428,       20.9217770362,       24.7741874651, 

 55 :       11.7298865621,       10.1802191618,       10.5720358408,       13.6541262143,       13.0717268281,       13.3738621297, 

 56 :       11.6520524994,       13.4732923593,       15.1137069458,       19.6391088533,       19.8817273292,       22.6044071700, 

 57 :        8.7944443244,        7.7765307842,       13.3726243393,        0.4885322455,        1.5605716470,        1.3088040036, 
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  indepedent sample correlation coefficient------------ 

r(X1,X2)=        0.2859050169 

r(X1,X3)=        0.2312889512 

r(X1,X4)=        0.2005213829 

r(X1,X5)=        0.2265887605 

r(X1,X6)=        0.2167931260 

r(X2,X3)=        0.7866728319 

r(X2,X4)=        0.6583522828 

r(X2,X5)=        0.6616447747 

r(X2,X6)=        0.6699690814 

r(X3,X4)=        0.8279580562 

r(X3,X5)=        0.8262028589 

r(X3,X6)=        0.8057327110 

r(X4,X5)=        0.9937831984 

r(X4,X6)=        0.9677570153 

r(X5,X6)=        0.9770514117 

 
Appendix III 
 
Table 3 shows the estimated line where we regress each coefficient of the d statistic on the 

autocorrelation coefficients in the autoregressive models with T = 57, k = 6 and three variance-covariance 
matrices. Appendix III shows the estimated function of each coefficient and the corresponding residual plot. 

 
  
Table A-III. The estimated function and residual plot of each coefficient in three models 

 Model A Model B Model C 
Estimat
ed 
functio
n of X2 

X2=                   2.00276415438656840000+ 
                  -1.64527441226274250000*X1^1+ 
                   0.02402413310483098000*X1^2+ 
                   0.04011142093775976700*X1^3+ 
                  -0.19569147005677223000*X1^4+ 
                  -0.07628797340541204600*X1^5+ 
                   1.96844828128814700000*X1^6+ 
                   0.47423921976266570000*X1^7+ 
                  -9.18280923366546630000*X1^8+ 
                  -1.92248008535207760000*X1^9+ 
                  23.28459286689758300000*X1^10+ 
                   4.14671876727263110000*X1^11+ 
                 -32.32774972915649400000*X1^12+ 
                  -4.30549033957667860000*X1^13+ 
                  23.28432893753051800000*X1^14+ 
                   1.69847563160714190000*X1^15+ 
                  -6.77781558036804200000*X1^16+ 

X2=                   2.00285458297548760000+ 
                  -1.64470797005871040000*X1^1+ 
                  -0.00454932160209864380*X1^2+ 
                   0.00927235203368426130*X1^3+ 
                   0.16936979815363884000*X1^4+ 
                   0.28804339144714852000*X1^5+ 
                  -1.49353519082069400000*X1^6+ 
                  -1.72851022418154090000*X1^7+ 
                   6.88667500019073490000*X1^8+ 
                   4.85288819303698920000*X1^9+ 
                 -16.79043436050415000000*X1^10+ 
                  -6.98888725740226850000*X1^11+ 
                  22.59680891036987300000*X1^12+ 
                   5.07867236837829240000*X1^13+ 
                 -15.62164354324340800000*X1^14+ 
                  -1.47609063876583240000*X1^15+ 
                   4.34942269325256350000*X1^16+ 

X2=                   2.00281731306768050000+ 
                  -1.64539365254915730000*X1^1+ 
                  -0.06201925780624151200*X1^2+ 
                  -0.09805036787599519200*X1^3+ 
                   0.04113501310348510700*X1^4+ 
                  -0.18425352406529782000*X1^5+ 
                   0.23702049255371094000*X1^6+ 
                   0.77233835506740434000*X1^7+ 
                 -21.15847778320312500000*X1^8+ 
                   3.66662154669757000000*X1^9+ 
                 270.37036132812500000000*X1^10+ 
                 -39.18330250936560300000*X1^11+ 
               -1543.53515625000000000000*X1^12+ 
                  89.36592935863882300000*X1^13+ 
                4213.85546875000000000000*X1^14+ 
                 -28.53425410110503400000*X1^15+ 
               -4475.82812500000000000000*X1^16+ 

X2 

   

Estimat
ed 
functio
n of X3 

X3=                   0.06693278714515330000+ 
                   0.00096872929498204030*X1^1+ 
                  -0.04520157202942237700*X1^2+ 
                  -0.00275858333043288440*X1^3+ 
                   0.02098693347819846600*X1^4+ 
                   0.05889438558369875000*X1^5+ 
                  -0.04170386898277911300*X1^6+ 
                  -0.55974376387894154000*X1^7+ 
                   0.10307001079297606000*X1^8+ 
                   2.80556001514196400000*X1^9+ 
                  -0.19054156384027010000*X1^10+ 
                  -8.35619109869003300000*X1^11+ 
                   0.10881430686413296000*X1^12+ 
                  15.06040996313095100000*X1^13+ 
                   0.19172376901815369000*X1^14+ 
                 -16.10446360707283000000*X1^15+ 
                  -0.27125440162717496000*X1^16+ 
                   9.41034364700317380000*X1^17+ 
                   0.07943948994756056000*X1^18+ 
                  -2.30899981409311290000*X1^19+ 

X3=                   0.06692745159035373700+ 
                   0.00100926802133471940*X1^1+ 
                  -0.04403440576186312700*X1^2+ 
                  -0.00818694464396685360*X1^3+ 
                  -0.02190339320600287500*X1^4+ 
                   0.17682791128754616000*X1^5+ 
                   0.56392564276029589000*X1^6+ 
                  -2.03245097398757930000*X1^7+ 
                  -4.36716125474777070000*X1^8+ 
                  12.71202158927917500000*X1^9+ 
                  18.62126043066382400000*X1^10+ 
                 -47.70089125633239700000*X1^11+ 
                 -47.93447231641039300000*X1^12+ 
                 111.62678289413452000000*X1^13+ 
                  75.95208441745489800000*X1^14+ 
                -164.07429504394531000000*X1^15+ 
                 -72.36105220322497200000*X1^16+ 
                 147.18862628936768000000*X1^17+ 
                  38.04211827833205500000*X1^18+ 
                 -73.61198830604553200000*X1^19+ 
                  -8.50006912779645060000*X1^20+ 
                  15.73104691505432100000*X1^21+ 

X3=                   0.06693905433940017200+ 
                   0.00112085084241542180*X1^1+ 
                  -0.14931126567535102000*X1^2+ 
                  -0.05720452920922980400*X1^3+ 
                   0.23701512813568115000*X1^4+ 
                   2.79059713566675780000*X1^5+ 
                  -5.54301834106445310000*X1^6+ 
                 -82.39533479511737800000*X1^7+ 
                 162.23004150390625000000*X1^8+ 
                1337.14645475149150000000*X1^9+ 
               -2696.40917968750000000000*X1^10+ 
              -12839.57588338851900000000*X1^11+ 
               26713.79687500000000000000*X1^12+ 
               75017.66387939453100000000*X1^13+ 
             -160488.68750000000000000000*X1^14+ 
             -261974.91619873047000000000*X1^15+ 
              573819.75000000000000000000*X1^16+ 
              502634.39389038086000000000*X1^17+ 
            -1124086.00000000000000000000*X1^18+ 
             -407490.87664794922000000000*X1^19+ 
              929648.50000000000000000000*X1^20+ 
 



Lee, M-Y., 2014. The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive 
Models. Expert Journal of Economics, 2(3), pp.85-99 

98 

X3 

  

Estimat
ed 
functio
n of X4 

X4=                   0.25871634963780865000+ 
                   0.00190481592380820080*X1^1+ 
                  -0.08788307533168926400*X1^2+ 
                  -0.00703720701858401300*X1^3+ 
                   0.04243934395884707600*X1^4+ 
                   0.16138683911412954000*X1^5+ 
                  -0.27570165432905469000*X1^6+ 
                  -1.52017983049154280000*X1^7+ 
                   1.41675009857317490000*X1^8+ 
                   7.59491324424743650000*X1^9+ 
                  -4.54018481299863200000*X1^10+ 
                 -22.45107614994049100000*X1^11+ 
                   8.53803876909842070000*X1^12+ 
                  40.04951357841491700000*X1^13+ 
                  -9.34289753378470780000*X1^14+ 
                 -42.32602667808532700000*X1^15+ 
                   5.65262481257468610000*X1^16+ 
                  24.40732628107070900000*X1^17+ 
                  -1.51321717932046340000*X1^18+ 
                  -5.89714848995208740000*X1^19+ 

X4=                   0.25874558828494687000+ 
                   0.00116615943989017980*X1^1+ 
                  -0.09370305367139275500*X1^2+ 
                   0.04326088697416707900*X1^3+ 
                   0.22944046422412612000*X1^4+ 
                  -0.93365782871842384000*X1^5+ 
                  -2.57513941204121010000*X1^6+ 
                   8.71797290444374080000*X1^7+ 
                  15.23820672201236400000*X1^8+ 
                 -43.85258543491363500000*X1^9+ 
                 -50.98315056676892700000*X1^10+ 
                 128.42374897003174000000*X1^11+ 
                  99.67723387047044500000*X1^12+ 
                -225.93347322940826000000*X1^13+ 
                -113.13078427802429000000*X1^14+ 
                 235.13924753665924000000*X1^15+ 
                  69.18502820802859800000*X1^16+ 
                -133.33349180221558000000*X1^17+ 
                 -17.67463392936110700000*X1^18+ 
                  31.75831666588783300000*X1^19+ 
 

X4=                   0.25872414294541740000+ 
                   0.00218952529007765410*X1^1+ 
                  -0.28711437892281433000*X1^2+ 
                  -0.11474610300501809000*X1^3+ 
                   0.09467011441657291500*X1^4+ 
                   5.82031850516796110000*X1^5+ 
                   0.56867189035256160000*X1^6+ 
                -174.21119821071625000000*X1^7+ 
                   4.15725120907882230000*X1^8+ 
                2847.46576309204100000000*X1^9+ 
                -278.86300692148507000000*X1^10+ 
              -27512.49142456054700000000*X1^11+ 
                3717.06452841684220000000*X1^12+ 
              161644.86083984375000000000*X1^13+ 
              -21917.94077126681800000000*X1^14+ 
             -567304.79101562500000000000*X1^15+ 
               61310.82944253087000000000*X1^16+ 
             1093264.07617187500000000000*X1^17+ 
              -66382.15657681226700000000*X1^18+ 
             -889763.74609375000000000000*X1^19+ 
 

X4 

   

Estimat
ed 
functio
n of X5 

X5=                  -0.00291216222649381960+ 
                   0.64867459781227588000*X1^1+ 
                   0.04365262278588488700*X1^2+ 
                  -0.23647712157747591000*X1^3+ 
                  -1.35425623692572120000*X1^4+ 
                   3.78865170210141860000*X1^5+ 
                  16.48487353324890100000*X1^6+ 
                 -25.01537586234030600000*X1^7+ 
                 -98.04673397541046100000*X1^8+ 
                  92.79775447481188200000*X1^9+ 
                 326.88679599761963000000*X1^10+ 
                -192.81265069143592000000*X1^11+ 
                -636.72084188461304000000*X1^12+ 
                 224.12265730113359000000*X1^13+ 
                 718.24755907058716000000*X1^14+ 
                -136.98606110438686000000*X1^15+ 
                -434.69468307495117000000*X1^16+ 
                  34.89437117650823000000*X1^17+ 
                 108.77539741992950000000*X1^18+ 
 

X5=                  -0.00156830864398216360+ 
                   0.66737813741740326000*X1^1+ 
                  -0.20871253625955433000*X1^2+ 
                  -1.32277924744723660000*X1^3+ 
                   6.79747200198471550000*X1^4+ 
                  22.01213340540005000000*X1^5+ 
                 -81.69792529940605200000*X1^6+ 
                -160.22442125098451000000*X1^7+ 
                 489.64396274089813000000*X1^8+ 
                 620.90964811027334000000*X1^9+ 
               -1633.90411281585690000000*X1^10+ 
               -1355.63317866927900000000*X1^11+ 
                3180.45693492889400000000*X1^12+ 
                1675.05565517320060000000*X1^13+ 
               -3588.04350376129150000000*X1^14+ 
               -1094.70251322849530000000*X1^15+ 
                2172.19306564331050000000*X1^16+ 
                 294.72894110489710000000*X1^17+ 
                -545.88428068161011000000*X1^18+ 

X5=                  -0.00286740150323794300+ 
                   0.64842448632645633000*X1^1+ 
                   0.06563797454873565600*X1^2+ 
                  -1.23104680830800820000*X1^3+ 
                  -5.01435196027159690000*X1^4+ 
                  26.79619901393743900000*X1^5+ 
                 285.35144710540771000000*X1^6+ 
                -726.24347742414102000000*X1^7+ 
               -8435.74569702148440000000*X1^8+ 
               11439.42840493843000000000*X1^9+ 
              139541.98205566406000000000*X1^10+ 
             -112706.41110163927000000000*X1^11+ 
            -1372194.00341796880000000000*X1^12+ 
              701381.51682734489000000000*X1^13+ 
             8199799.37890625000000000000*X1^14+ 
            -2657743.19020271300000000000*X1^15+ 
           -29211744.45312500000000000000*X1^16+ 
             5565915.56249618530000000000*X1^17+ 
            57045139.81250000000000000000*X1^18+ 
            -4919005.74142837520000000000*X1^19+ 
           -47001062.00000000000000000000*X1^20+ 
 

X5 

   

Estimat
ed 
functio
n of X6 

X6=                   2.89526127138450340000+ 
                  -0.00659959714539581910*X1^1+ 
                   1.05570823063877750000*X1^2+ 
                  -0.18524028745014220000*X1^3+ 
                  -6.31489422979119030000*X1^4+ 
                   2.72991794068366290000*X1^5+ 
                  46.29017527471736300000*X1^6+ 
                 -19.13156626373529400000*X1^7+ 
                -163.80979793266837000000*X1^8+ 
                  67.80064900219440500000*X1^9+ 
                 302.79609119648160000000*X1^10+ 
                -125.60299882292747000000*X1^11+ 
                -279.37539797732717000000*X1^12+ 
                 118.05200903117657000000*X1^13+ 
                 101.57023962263294000000*X1^14+ 
                 -45.09170855581760400000*X1^15+ 
 
 

X6=                   2.88418800220961820000+ 
                   0.16979065437044483000*X1^1+ 
                   2.41716662746390610000*X1^2+ 
                  -8.24893121444620190000*X1^3+ 
                 -33.18561544813537300000*X1^4+ 
                 107.87552714906633000000*X1^5+ 
                 241.93556902189965000000*X1^6+ 
                -614.07626396417618000000*X1^7+ 
                -832.88981423954260000000*X1^8+ 
                1776.00263896584510000000*X1^9+ 
                1465.67227544617090000000*X1^10+ 
               -2725.72459515929220000000*X1^11+ 
               -1272.83054430824970000000*X1^12+ 
                2115.37847287952900000000*X1^13+ 
                 432.10185412653846000000*X1^14+ 
                -653.76943070068955000000*X1^15+ 
 

X6=                   2.89872152014899020000+ 
                  -0.01385549449634027000*X1^1+ 
                   0.97876272603032277000*X1^2+ 
                   0.36579956805508118000*X1^3+ 
                  -0.99048284207492276000*X1^4+ 
                  -4.57714397413656120000*X1^5+ 
                 -10.86867282170240000000*X1^6+ 
                 -14.21063726395368600000*X1^7+ 
                   5.41359898325275250000*X1^8+ 
                 808.61749762296677000000*X1^9+ 
                 521.00385404010342000000*X1^10+ 
               -7131.31718730926510000000*X1^11+ 
               -2755.07192750513650000000*X1^12+ 
               25882.72533130645800000000*X1^13+ 
                4364.86658143642130000000*X1^14+ 
              -34396.09129142761200000000*X1^15+ 
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Since Lėon Walras neoclassical economists hold an inalterable belief in a unique and 

stable equilibrium for the economic system which however remains to this day unob-

servable. Yet that belief is the corner stone of other theories such as the ‘Efficient 

Market Hypothesis’ as well as the philosophy of neo-liberalism, whose outcomes are 

also shown to be flawed by recent events. A modern market economy is obviously an 

input/output nonlinear controllable construct. However, this paper examines four 

such models of increasing complexity, including the affine nonlinear feedback H-

control, to show that the ‘data requirement’ precludes all attempts at the empirical 

verification of the existence of a stable equilibrium. If equilibria of complex nonlinear 

deterministic systems are most likely unstable, multiple or deterministically chaotic 

depending on their parameter values and uncertainties, then society should impose 

limits on the state space and focus on endurable patterns thrown-off by such systems. 

 

Keywords: Equilibrium, nonlinearity, controllability, nonlinear feedback, H-con-

trol, complexity. 
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1. Introduction  

 

The basic assumptions of neo-classical economics are well-known, but this paper is mainly concerned 

with a subset of these. For example, it is assumed that individuals and firms optimize under constraints; that 

agents are rational and always have rational expectations; that the more connected are networks of individual 

participants the less risky, stable and robust is the economic system, etc. Undoubtedly, the most misleading of 

these assumptions, i.e., the one which is our main focus here, is the claim that market economies tend toward 

stable equilibria (or an optimal Pareto state of balance). It is understood that such systems may be found away 

from their equilibrium points as a result of exogenous shocks, but they will inexorably return to their equilib-

rium on their own power. As a consequence, therefore, policy gurus of neo-liberalism propagate other beliefs 

to the effect that markets should be allowed to make all the major economic, social, and political decisions; 

that the state should refrain from any attempt to control markets, or that even public institutions should be 

handled over to corporations for the sake of greater efficiency, etc.           

      Strangely enough, after more than a century and a half not a single one of these assumptions has found 

empirical support. Beside the observational judgment to the effect that economic agents are generally self-

interested and have strong monotone preference, most of those assumptions are wishful pronouncements. Yet, 
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the equilibrium assumption, for example, though unobservable, is the foundations of both the ‘Efficient market 

Hypothesis’ and neo-liberalism that have had and continue to have very undesirable outcomes, in the Western 

economies in particular. These counterfactual results and the inability to sustain such a pivotal assumption do 

not bode well for that social science. It would, therefore, be useful to reexamine a few models of market 

economies so as to see why the stable equilibrium assumption has always escaped empirical verification re-

gardless of assumed models’ characteristics.  

      This paper consists of two parts. The first reexamines two linear models. That is the Walrasian pure 

exchange model, and a controllable linear time invariant model. The former is incomplete but is simple to 

analyze; its merit lies in the fact that it provides the first mathematical expression of the stable equilibrium 

assumption. The latter stumbles on observability and linearity. More realistically, it is proper to suppose at the 

outset that a modern market is a complex construct designed to facilitate exchange, which is more natural. It 

should therefore be controllable. Hence, Part II appeals to the recent but well characterized L2- gain analysis 

of nonlinear systems and nonlinear feedback H-infinity control to examine two classes of nonlinear models, 

one in the non-affine category and the other in the affine categories. All four cases show that the equilibrium 

of market economies may well exist in theory, but will remain forever unobservable due to the complexity of 

markets and /or due to the formidable data requirement for such an endeavor. In the concluding remarks, we 

will then offer a few suggestions on how to navigate in complex systems. 

 

2. Part I  
 

In this section, we will review the Walrasian pure exchange (WPE) model and a controllable linear 

time invariant (LTI) model. We will show, on the one hand, that the equilibrium of the WPE model can easily 

be inferred but not easily demonstrated empirically. Though naïve and unrealistic, it provides nevertheless the 

justification for a set of beliefs that may still be blocking progress in the development of the neo-classical 

theory of economics. The LTI model, on the other hand, completely shunts the unavoidable complexity of real 

markets. Despite the unrealism of both models, however, their analyses are still worthwhile, for they clearly 

show that their data requirement precludes all attempts to characterize a stable equilibrium.  

 

2.1. The Beginning    

      The model conceived by Walras from observing the functioning of the ‘Bourse de Paris’ is that of a 

pure exchange economy. It supposes there are i consumers (i  m) of j goods (j  n). Each consumer devotes a 

fraction i
j of his or her budget (B) to good j such that ji

j = 1. The budget of i comes from the sale of 

endowments i
j such that the demand of i for good j is xi

j = i
j (B) /pj, where pj is the price of j. Walras supposed 

a one period market. Hence in the neighborhood of the equilibrium point, we have a first-order linear differ-

ential equation:  

 

                                         ẋ = dg (1/xj) [A – dg (jj)] x                                           (1)                 

                                             = dg (1/xj) [M] x,  

 

where x  X  n is the state vector, and [A – dg (j)] = M n x n. For the derivation of (1), (see Dominique, 

2008).   

Equation (1) is an input/output construct (with inputs j j and output x  X  n ) driven by incentives 

to minimize excess demand of all goods j.   

      For a solution, Walras posited a tâtonnement process controlled by an auctioneer. Had he taught of an 

exogenous supply rate for a sequence market, (1) would have been written as,  

 

                            ẋ = M x,  x  X  n
+ , x (0) = xo > 0 as initial condition,              (2) 

 

and (2) would have been represented by a linear system of differential equations whose solution is:  

 

                                                   x (t) = e M t xo,                                                            (3) 

 

where e M t is an n x n matrix function defined by its Taylor series, provided of course that M is invertible.  

      If M were a real invertible matrix of order n x n, it would be called a Metzler matrix with k lines and 

l columns, and element m k l  0 for k  l. Put simply, M would be a positive matrix if all non-diagonal elements 

were non negative and it would then preserve the non-negativity of the state vector. The condition m k l  0, k 
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 l is necessary, while the stronger condition m k l > 0, k  l is sufficient for a nonnegative solution. Hence, 

starting from any nonnegative initial xo (= price po), the solution (3) would remain nonnegative.  

      Generally, if M is a nonnegative matrix, then for some constant b > 0, the matrix D = b I + M is also 

nonnegative and has Frobenius-Perron eigenvalue μo  0 and a corresponding positive eigenvector vo. It fol-

lows that λo = μo – b, (b  +) is an eigenvalue of M. λo is real and is the eigenvalue of M with the largest 

negative real part; it is therefore the dominant eigenvalue of M. Two important conclusions would be drawn 

from this sort of transformation. That is: 1) it would be possible to translate all results of nonnegative matrices 

to equivalent Metzler matrices, and; 2) it would follow that o is real and xo > 0 such that M xo = o xo, and for 

any other   o, the Re () < Re (o). This would guarantee a positive and stable equilibrium point for (3) 

without, of course, any guarantee that it would be easily observable.   

      At first sight, the equilibrium point of a pure exchange market economy is a unique and stable fixed-

point. This finding is also responsible for a real ‘déformation professionnelle’ in economic thinking. For even 

when production with delays and time-to-build and increasing returns are added, even when endogenous 

money and financialization are included, or when faced with nonlinearity and myriads of interconnections 

(including false signaling), economists remain fixated on an inexorable unique stable fixed-point despite the 

warning of the Sonnenschein-Mantel-Debreu-Theorem (Sonnenschein, 1972, 1973; Mantel, 1974; Debreu, 

1970, 1974). In fact, it is obvious from (3) that the equilibrium x* = f (x; , ) depends on the distribution of 

the sets  and , i. e., on revealed preferences and supply. Even if M is invertible, changes in budget distribu-

tions /or in the supply rate would cause x* to wobble and to elude measurements in the state space since it 

would be undistinguishable from a transient point. But M is not invertible in the Walrasian system. If we were 

to write down the augmented matrix M and then use the Gauss-Jordan elimination to find the reduced row-

echelon form of the augmented matrix of M, we would find a free variable. Positing x as the price, and knowing 

that the rank of M is (n-1), then the values of the (n-1) prices would depend on the value assigned to the free 

variable. That free variable would then be the numéraire, whose arbitrary values would yield infinite stable 

solutions. This is not all however. All the elements of M are functions of α and ω. Hence, as the distributions 

of the sets of preferences coefficients and endowments are constantly changing, even with a complete set of 

data at a given point in time, by the time it would take a super computer to compute x*(.), it would have already 

changed.     

      Although non observable, the stable equilibrium assumption gave substance to the Quantity Theory of 

Money, to Adam Smith’s metaphor of the invisible hand as well as to the obsession with a stable equilibrium 

found in all other results popularized by Bachelier and the Chicago school. As regards the latter point, it should 

be noted that the deterministic wobbling motion is confused with Brownian motion; that is the first grave error. 

As we will show shortly, in real market economies, stable equilibria are not guaranteed; that is the second 

error. And both cast a serious doubt on the validity of the claims transposed in extenso to real markets. All that 

can be said is that the Walrasian construct is a reflexive and therefore controllable system; indeed, the sets of 

admissible controls are the distributions of α and ω. But in a perfect market each agent has only an infinitesimal 

influence on the control set, while collections of them are unlikely to act in unison. Hence despite the mathe-

matical reasonableness of the stable equilibrium assumption in that incomplete model, it still cannot even be 

verified empirically, in particular if n is a large number. What is then the justification to carry it over to a 

nonlinear and complex system such as a real market economy?    

 

2.2. A Linear Time Invariant Model  

     The feedback optimization procedure considered here rests on three basic concepts. That is, multi-

inputs-multi-outputs linear time invariant finite-order systems; internally stable feedback; and system norm. 

In addition, there is the concept of ‘well-posedness’ of the optimization problem ensuring that the optimization 

algorithm does not break down. The aim of the optimization process is to find an LTI feedback controller that 

stabilizes the feedback system and minimizes the closed-loop system from the exogenous input stream to the 

cost of producing the output.    

Consider now a market economy, E, represented by an LTI model defined by finite dimensional state 

space model: 

 

                                      ẋ(t) = A1 x (t) + A2  (t) + A3 c (t)                            (4) 

                                      o (t) = C1 x (t) + C2  (t) + C3 c (t)                                      (5) 

                                      y (t) = D1 x (t) + D2  (t).                                                    (6) 
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Equations (4) to (6) describe an input/output economy E with an input partitioned into 2 vector com-

ponents,  (t) and c (t);  (t) represents a set of exogenous inputs, and c (t) is both another input to E and the 

output of the controller K. The output of E is also partitioned into 2 vector components, o (t) representing the 

quadratic financial and thermodynamic costs of producing the output, while y (t) is the output to be measured 

and to be manipulated, which is also an input to the controller K. System E has the properties of linearity and 

time invariance. Linearity means that if ω1 (t) →y1 (t) and ω2 (t) → y2 (t), then a1 ω1 (t) + a2 ω2 (t) → a1 y1 (t) + 

a2 y2 (t) (ai  +). Time invariance, on the other hand, means that if ω (t) → y (t), then ω (t - ) → y (t - ). 

The controller K is an LTI model defined by a finite dimensional state space model of the form:  

 

                                        ẋk  (. ) = Ak xk (.) + Bk y (.)                                                  (7) 

                                        ck (.) = Ck xk (.) + Dk y (.).                                                (8) 

 

The coefficient matrices Ai, Ci and Di in ((4)- (6)) are expected to be known, while coefficient matrices 

Ak, Bk, Ck and Dk are to be designed or found by the optimization algorithm.  

      Equation (6), the input to K, does not include the controller’s output c (.). Then system (4) - (6) defines 

a closed-loop state space model of the form:  

 

                                               ẋcl (.) = Acl xcl (.) + Bcl  (,)                                              (9) 

                                            ocl (.) = Ccl xcl (.) + Dcl ω (.),                                                (10) 

where    

                                   A1 + A3 Dk D1    A3Ck               A1 + A3  Dk D1     A3Ck                                                                                                

xcl = [xk   x]T,  Acl =                                           ,  Bcl =                                         ,  Ccl = [C1 + C3 D2  D1  C3 Ck]                                                                                                        

                                   Bk D1                  Ak                   Bk D1                    Ak          Dcl = [C2 + C3 Dk  D2].                                                                                                  

 

 

For the controller to be stabilizing, the matrix Acl must be a Hurwitz matrix.  

      The real-valued functions of the feedback design, specified in (9) and (10) are to be minimized with 

respect to the controller K, subject to the constraints of well-posedness and stabilization. The H-infinity norm 

is the task of minimizing the H norm ║G║ of the transfer matrix G. The matrices Ai, Ci, Di must be known 

but they must also be subject to the following conditions to ensure that they are suitable for the feedback 

optimization. That is, i) the pair (A1, A3) must be stabilizable, meaning that there exists a P matrix such that 

[A1 + A3P] is a Hurwitz matrix; ii) the pair (A1, D1] must be detectable, meaning that there exists a Q matrix 

such that [A1 + Q D1] is a Hurwitz matrix; and iii) the optimization procedure must be minimizing and satis-

fying the condition of existence of a minimizer (not discussed).    

      It should be noted at this point that the input set cannot be measured accurately due its sheer size and 

the presence of intangible inputs for which there is no metrics, and similarly for the output set y (t). Part of the 

difficulty stems from the fact that x  n, c  m, and   q , while the matrices Ai, Ci, Di, P, and Q, etc., are 

unknown. If initial conditions and the rank of these matrices are unknown, we cannot claim to know everything 

about the dynamic behavior of x (t) from information from output measurement. Put more simply, stabiliza-

bility and detectability being the sine qua non conditions for the claim of a stable equilibrium, hence, the data 

requirement is too demanding to demonstrate the existence of a stable equilibrium in a real LTI market system. 

Furthermore, a market economy with positive and negative feedbacks is almost surely nonlinear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

 

3. Part II  

 

3.1. Feedback Non-Linear H-Infinity Optimization Theory  

       This section examines two solution concepts in the theory of robust and optimal control of nonlinear 

systems based on the Hamilton-Jacobi Equations. These equations are a special case of the Hamilton-Jacobi 

Bellman equations representing a necessary condition describing extremal geometry in generalizing problems 

of the calculus of variations. The Hamilton-Jacobi inequality (HJI) plays an important role in the study of 

various qualitative properties of controlled dynamical systems such as stability, invariance and optimality. If 

a solution to a certain generalized HJI exists, then it is a sufficient condition for stability. The Hamilton-Jacobi-

Isaacs equations (HJIE), on the other hand, are the nonlinear version of the Riccati equation studied in the H-

control problem for linear systems. We will focus on the contributions of Aliyu (2011) who summarizes all 

relevant topics on the subject. In particular, he shows (via state feedback H-control problems for affine non-

linear systems that use the theory of dissipative systems (developed mainly by (van der Schaft, 1991; Bazar 
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and Bernhard, 1995) that significant progress had been made. For, van der Schaft had already shown that for 

time-invariant affine nonlinear systems that are smooth, the state feedback H-control problem is solvable by 

smooth feedback if there exists a smooth positive semi-definite solution to a dissipation inequality. The non-

affine and affine cases considered by Aliyu will suffice for the present purpose, which is to show the necessary 

and formidable ‘data requirement’ faced by the would-be controller of the economy.   

 

3.2. Generalities  

During the 1960s and 1970s, economists were encouraged by the World Bank to build large general 

equilibrium models, which produced mainly insignificant results. During the 1990s onward, economists 

switched from linear H-infinity control developed by Zames (1981, 546-559; Francis (1987), among others, to 

the theory of nonlinear H-infinity control based on the efficient solution of the Hamilton-Jacobi equations 

(HJE) and on Hamilton-Jacobi- Bellman equations (HJBE) that extended the contributions of both Euler and 

Lagrange. The nonlinear case is mainly the contributions of Isidori (1997; Isidori and Astolfi (1992, pp.1283-

1293) and others (Doyle, Glover, et al., 1989, pp.831-847; van der Schaft, 1992). In this paper, we will be 

guided mainly by the work of Aliyu (2011, p.133) who argues that the theory of H-infinity control becomes 

really useful when faced with a Hamiltonian that is independent of time. In that case, it is then possible to 

separate the variables in the HJE. Subsequently, it was recognized from the calculus of variation that the var-

iational approach to problems of mechanics could equally be applied to problems of optimal control.   

      The H-infinity optimization problem is formulated in terms of efficient design of a stabilizing control-

ler K (s) that minimizes the H -norm of the closed-loop transfer matrix (Go ) from the input set  (t) to the 

output set o (t) for a given system E, defined by some state-space equations.  

      The term H -control refers to the mathematical space over which the optimization takes place, which 

is the space of matrix-valued functions that are analytic and bounded in the open right half of the complex 

plane. The H -norm, on the other hand, is the maximum singular value of the function over that space. The 

H algorithms solve suboptimal controller design problems formulated as that of finding a controller for a 

given ρ > 0 that is capable of achieving the closed-loop L2-gain ‖Go ‖< ρ if it exists.   

      As regards the nonlinear equivalent of the linear H -control problem, van der Schaft has shown that 

for time-invariant affine nonlinear systems that are smooth, state feedback H -control problems are solvable 

by smooth feedbacks if there exists a smooth positive semi-definite solution to a dissipative inequality, or 

equivalently, an infinite horizon HJB-inequality, which is the same as the Hamilton-Jacobi-Isaacs (HJI)-ine-

quality found by Basar. The solution of the output-feedback problem with dynamic measurement feedback for 

affine nonlinear systems was achieved by Isidori (1997; Ball, Walker, et al.,1993, pp.546-559), among others. 

Most of these developments are succinctly summarized in Aliyu who has also examined in dept a series of 

nonlinear affine and non-affine H -control problems. We will consider two of Aliyu’s problems here. The 

first, the state feedback problem, represents the kind of problems studied by economists in the 1980s. The 

second arises when the states of the system are not available for feedback or when the output is used for 

feedback. It is then called: Robust output measurement feedback nonlinear H-control. It is a more elaborated 

model in the affine category that includes uncertainty and parameter variations. It seems to be a better repre-

sentation of the real market economic. We now consider the first. 

 

3.3. The Non-affine Case 

      Consider a system or a market economy E with two types of inputs: (t) as a collection of exogenous 

disturbance inputs, and input c(t) (the output of the controller), which becomes the input to the actuator driving 

E. The main difference between  (t) and c (t) is that the controller can manipulate c (t) but not  (t). E has 

two outputs: o (t) (the cost performance output), and y (t) (the measured output); the latter is both an output of 

E and an input of the controller; and both outputs are to be measured and regulated.  

      The problem here is to find a controller K (s) for the generalized E (s) such that the infinity-norm of 

the transfer function relating input  (t) to the performance output o (t) is minimized. The minimum gain is 

ρ*. If the norm for an arbitrary stabilizing controller is ρ > ρ*, then the E(s) is L2-gain bounded. In control 

theory, a system ∑ with input  (t) and output o (t) is said to have L2-gain less or equal to ρ if x  N  X,  

k (x) (0 < k (x) < , k (0) = 0) such that  ʃo
 ║o(t) ║  ρ2 ʃo

  ║║ 2 + k(x), t > 0,  (t): x(0) = 0, and k (x) 

is a remaining part of the integrals from t to . This leads to the concepts of available storage and storage 

function. Then ∑ has L2-gain   ρ if N = X. Applied to economy E, L2-gain is a performance measure. To solve 

the H-control problem one starts with a value of ρ and reduce it until ρ*is reached.  
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      To construct a typical state-feedback H-control problem for a general class of non-affine non-linear 

systems, we follow Aliyu (2011,p. 131). Here, the plant problem is compared to economy E (t) with inputs  

(t) and c (t), and outputs are o (t) and y (t); and the controller K (s) represents a set of policies and technologies. 

Thus the nonlinear system is defined on some manifold X  n containing the origin, expressed in local co-

ordinates xi, i  n. The state-space equations are: 

 

                                                                ẋ = F (x; , c)  

                                                  E (.) :    y = x                                                                       (11)  

                                                               o =  (x, c),   x (to) = xo,  

 

where the variation of market price dp /dt is represented by ẋ, and x (.)  X is the state vector. In addition, c 

(.)  C  q is a q-dimensional control input belonging to the set of admissible controls C;  (.)  W  s is 

the set of inputs to be tracked, which belong to the set of admissible disturbances; y (.)  n is the measured 

output of E; and o  r is the performance output to be controlled. Further, F (x; , c): X x W x C  Z* is the 

state dynamics function;  (x, c): X x C  r is the controlled output function, and the controller to be 

synthesized is referred to as K (.). Finally, the functions F (.), and  (.) are assumed to be smooth Ck (k  1) 

functions of their arguments, and the point x = 0 is assumed by economists of the 1980s to be the unique 

equilibrium point for E such that F (0,0,0) = 0,  (0,0) = 0 (see Scheinkman, 1976, pp.11-30; Boldrin and 

Montruccio, 1986, pp.26-39; Benhabib and Nichimura,1979, pp.421-444; Blatt, 1983).   

      On the assumption that  (x, c) is linearizable, the matrix ∂  / ∂ c has full rank Ɩ. Letting T* be the 

cotangent bundle of dim 2n, the Hamiltonian function for the economy E is: H: T* X x W x C   as : 

 

H (x, Ɩ, , c) = ƖT F (x; , c) + (1/2)‖ (x, c)‖2 – (1/2) ρ2‖‖2.        (12) 

 

Equation (12) is locally concave with respect to  and locally convex with respect to c near the origin, 

which is also the equilibrium point. Hence, there exists a unique saddle-point (, c) for each (x, Ɩ) near the 

origin zero. From the rank Ɩ and the Implicit Function Theorem, there exist smooth functions *(x, Ɩ) and c*(x, 

Ɩ), defined in the neighborhood of the point (0, 0) such that *(0, 0) = 0, c*(0, 0), satisfying:  

        

                ∂ H (x, Ɩ, *(.), c (.)) /∂  = ∂ (x, Ɩ, *(.), c*(.)) /  c) = 0.                        (13) 

 

Further, suppose there exists a non-negative C1 function Z*: X , satisfying the inequality: 

        

                H*(x, Zx
T

 (.)) = H [(x, Zx
T(x), *(x, Zx

T(x), c*(x, Zx
T

(x)] ≤ 0.                     (14) 

 

Then the feedback law is *=  (x, Zx
T(.)), c* = c (x, Zx

T(.)). Substituting c* = c (x, Zx
T(.)) in (11) 

yields the closed-loop system, satisfying: 

 

        Zx
T(x) F (x, , c*(x, Zx

T(x)) + (1/2)‖ (x, c*(x, Zx
T(x)‖2 – (1/2) ρ2‖‖2  ≤ 0,   (15) 

 

which is dissipative with respect to the supply rate S (, o) = (1/2) [ρ2‖‖2 -‖o‖2 with storage function Z in the 

neighborhood of (x, ) = (0, 0), and ρ  ++. In this case and the following one, dissipation with respect to the 

supply rate means that a part of input energy is dissipated in the form of heat and waste.  

Obviously, in a physical system, control engineers would measure the variable (usually a unique sig-

nal) with a reasonable accuracy. In a social science, on the other hand, this task is much more difficult. For all 

intents and purposes, the set  is infinite and contains intangible elements such as agents’ confidence for which 

there is no metric. As the Hamiltonian is dissipative in conformity with the Second Law of thermodynamics, 

the function Z: X   exists, but it and all other functions, including the optimal feedbacks *(.), and c*(.), 

are unknown. Hence, the controls cannot be synthesized to guarantee the existence of a stable equilibrium. 

Further, the above problem neglects important features of a real market economy. For example, what Aliyu 

calls ‘un-modeled uncertainties’ contain parameter variations (already discussed in (3)), and uncertainties aris-

ing out of the measurements of certain intangibles such as ‘herd behavior’, consumers’ confidence, etc, that 

are sets in (-1, 1). Perhaps for all these reasons, the economists that ventured into optimal control never suc-

ceeded in either observing or demonstrating empirically the existence of an equilibrium point. To add more 
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realism to (11), we consider another Aliyu’s model (p.153), which is also discussed in Frieling et al., 1996, 

pp. 264-269; Anderson et al., 1998, pp. 1559-1593). 

 

3.4. The Affine Case  

      For the more realistic affine case, consider an affine robust measurement feedback nonlinear H- con-

trol economy shown in Figure 1. This time, there are 3 inputs to E: The exogenous inputs  (t), the output of 

the controller c (t), and the output of the set of uncertainties d (t) that bypasses the controller. Economy E has 

3 outputs: o (t); y (t) which is an input to the controller; and b, which is an input to the set of uncertainties. The 

state-space equations are: 

 

                                            ẋ = f (x) + f (x, u, t) + G1 (x)  + [G2 (x) + G2 (x, u, t)] c                     

                                   E:     o = G3 (x) + G4 (x) c                                                                     (16)                                                                                                         

                                            y = [G5 (x) + G5 (x, u, t)] + G6 (x) ;  x(to) = xo                                       .                                                                                                                                          

       

As before, the state vector is x  X; c  C  q, i. e. a q-dimensional controlled input belonging to the 

set of admissible controls;   W  s  L2 (.); y  Y  p is the measured output of E; and o  v is the cost 

performance output of E to be controlled. Further, F (x, , c): X x W x C  Z* is the state dynamics function; 

 (x, c): X x C  v is the controlled output function. The set of parameters that are susceptible to variations 

over time is u  U  s, while f, G2, G5   are unknown functions belonging to the set of admissible 

uncertainties. The real C functions are:   

 

                                              G1 (x): X  M n x s (X);       G2 (x): X  M n x q (X)  

                                              G3 (x): X  v;                   G4 (x): X  M v x q (X)                    (17) 

                                              G5 (x): X  p  ;                 G6 (x): X  M p x s(X).  

 

 

                      (t)                                                                                     o (t)                                                                

                   d (t)           c(t)               E(s)                           y (t)                              b (t)                                                                              

                                                          K (s)                                                                                                                      

                                                                                                                                                                             

                                                            (s)                                                                                                                                                                                                                                                     

                   

Figure 1. Robust Measurement Feedback Nonlinear H-infinity Control Economy E. 

       

These are subject to the following conditions of the system matrices:  

 

                                             i) G3
T(.) G4 (.) = 0 = G6 (.) G3

T (.)                                              (18) 

                                             ii) G4
T(.) G4 (.) = I = G6 (.) G6

T(.),  

 

where T indicates the transpose operation, and I is the identity matrix. Condition i) supposes no feedback 

between (t) and o (t); condition ii) implies that the control weighting matrix is identity for the norm function 

o (t). It should also be specified that f: X  Z*(x), where Z* is the vector space of all C vector fields in X; 

G2 (.)  M n x q (.), and G5: X  p.  

The task now is to find a dynamic controller for E such that the closed-loop system has L2-gain (en-

ergy) locally from the disturbance input  (t) to output o (t) that is less or equal to some prescribed ρ* > 0 with 

internal stability for all admissible (f, G2, G5)   and for all potential parameter variations u  U  s. 

Aliyu has shown that to characterize  some 6 additional matrices of appropriate dimensions are required. For 

the present purpose it suffices to say that it would be exceedingly difficult, if not impossible, to characterize 

 in economics.  
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      To solve the affine-robust-measurement-feedback-nonlinear-H-control system, many other condi-

tions must be satisfied, such as observability and zero-state detectability, i. e. both f, and G3 must be locally 

detectable. By zero-state observable, it is meant    X containing xo = 0 or that any trajectory starting at xo 

in , c (t) = 0, y (t) = 0, t  to implying x (t) = 0. The nonlinear system E is locally zero-state detectable if  

N  X near x = 0 such that  x (to)  N if o (t) = 0, c (t) = 0, t  to, implying lim t  x (t, to, xo, c) = 0. The 

system is zero-state detectable if N = X. As it can be seen, there is no hope that these conditions could ever be 

satisfied for economy E, and there is no point discussing them further, except to say that, more importantly, 

there must be a smooth positive semi-definite function Z* near the origin that satisfies the Hamilton-Jacobi-

Isaacs equation: 

 

  Zx
*(.) f (x) + (1/2) Zx*(.) [(1/ρ2) (G1(.) G1

T(.) + H2(x) H2
T(x) – G2(x) G2

T(x)] Zx
*T(.) + (1/2) G3

T(.) G3(.) +  

                                         (1/2) E1(.) E1
T(.) ≤ 0,                                                         (19) 

 

where H2(.) and E1(.) are two of the matrices that characterize the set of admissible uncertainties .  

      It should be recalled at this point that our task is not to dwell into the intricacies of stabilizing a con-

trolled economy but to show how difficult it would be to do so. Real market economies do not satisfy the 

properties of superposition and homogeneity due to friction, adjustment costs, cooperative and competing 

parts, myriads of interconnections, etc. They are obviously nonlinear and very complex. This is not to say that 

they are impossible to stabilize, but first optimality would have to be defined and second synthesizing policies 

in a rivalrous and pluralistic society would have to be found. But it should be borne in mind that, additionally, 

real modern markets face a measurement problem due to the lack of proper metrics. The data requirement 

representing myriads of interconnections is visible in the matrices M n x s, M n x q, M v x q, M p x s, and six more 

needed to characterize the set of uncertainties.  All we know is that economy E is a nonlinear dissipative 

system. It is now well-known that such systems may have multiple stable equilibria, unstable equilibria and a 

‘strange ‘attractor’; the latter is known to have a countable set of periodic orbits of arbitrarily large period, an 

uncountable set of aperiodic orbits, and a dense orbit. To assert that economy E tends toward a unique and 

stable equilibrium on its own power when: a) xo cannot be assumed to fall in some local stable manifold, or b) 

the equilibrium cannot be characterized empirically, or c) the system frequently produces undesirable out-

comes, reflects “une grave dėformation professionnelle’. 

 

4. Concluding Remarks 

       

Orthodox economists are firmly attached to the idea that the economic system, by its very nature, must 

be a stable system even though no stable market economy has ever been observed. Yet, the notion of stable 

equilibrium remains the corner stone of both the ‘Efficient Market Hypothesis’ and the philosophy of neo-

liberalism. The collapse of Western economies in 2007-2008 is an additional demonstration of the fallacy of 

that belief. The question now is that, as a group, economists are well versed in empirical research, why then 

do they hold such an inalterable belief in unobservable stable equilibria?  

      This paper attributes this preoccupation to three causes. That is, the Walrasian pure exchange econ-

omy; the fact that market economies, being social constructs, are theoretically controllable; and the total ne-

glect of the analyses of complex systems. This paper shows that the Walrasian pure exchange economy, where 

the notion of stable equilibrium found its first mathematical expression, may be a fine exercise that is never-

theless far-removed from the complexities of areal market economies. Indeed, market economies are social 

constructs designed to facilitate exchange; they should, therefore, be controllable in theory. The paper then 

uses the new advances in affine and non-affine nonlinear feedback H-infinity control theory to show that the 

lack of proper metrics and the data requirements preclude all attempts at empirical verifications. Moreover, 

market economies are nonlinear systems subject to multiple interconnections, parameter variations, and un-

certainties. Their equilibria may be multiple (as ascertained by the Sonnenschein-Mantel-Debreu Theorem), 

unstable, and deterministically chaotic. All depend on uncertainties and parameter values. Sensitivity to pa-

rameter variations, for example, means that minuscule changes here may produce unpredictable and huge un-

desirable results there. In addition, if the attractors of such systems are non-hyperbolic, then their outputs are 

extremely sensitive to noise. It then follows that in market economies, where information sets of participants 

are incomplete, observed outputs contain a noisy component that cannot be filtered out and therefore output 

measurements are bound to be spurious. Faced with complex systems, it is futile to attempt to establish causes 

and effects. Rather, it is wiser to start with policies defining the embedding space and then to look for correlates 

in observed and enduring patterns thrown-off by such systems. 
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When income growth under price dispersion reduces the time of search and raises 
prices of purchases, the increase in purchase price can be presented as the increase 
in the willingness to pay for insurance or the willingness to pay for consumer 
credit. The optimal consumer decision represents the trade-off between the 
propensity to search for beneficial insurance or consumer credit, and marginal 
savings on insurance policy or consumer credit. Under price dispersion the indirect 
utility function takes the form of cubic parabola, where the risk aversion behavior 
ends at the saddle point of the comprehensive insurance or the complete consumer 
credit. The comparative static analysis of the saddle point of the utility function 
discovers the ambiguity of the departure from risk-neutrality. This ambiguity can 
produce the ordinary risk seeking behavior as well as mathematical catastrophes of 
Veblen-effect’s imprudence and over prudence of family altruism. The comeback to 
risk aversion is also ambiguous and it results either in increasing or in decreasing 
relative risk aversion. The paper argues that the decreasing relative risk aversion 
comes to the optimum quantity of money. 
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1. Introduction to Indirect Utility Function of Satisficing Optimal Decision 
 
The analysis of the consumption-leisure choice U=U(Q,H) with respect to the wage rate w 

and to the purchase price reduction and marginal savings got from the search, or to the value ∂P/∂S, 
can be presented as the static photograph of a step in the dynamic satisficing decision procedure. 
The satisficing consumer decision procedure ignores unacceptable high prices PS; it starts at the 
reservation level of labor income wL0 and finishes at the purchase price level PP=wL< wL0, where 
the satisficing procedure results in optimal decision because it equalizes marginal costs of search 
with its marginal benefit and that equality provides the maximization of the utility function 
(Malakhov 2014). The use of the truly relative price, i.e., purchase price PP with regard to the time 
of search S or to the given place of purchase, gives new economic explanations for some anomalies 
of behavior like endowment effect, sunk costs sensitivity, little pre-purchase search of big ticket 
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items, and, finally, Veblen effect and money illusion. From the point of view of the problem 
maxU(Q,H) subject to w/∂P/∂S|const=Q/∂L/∂S, where the value ∂P/∂Sconst represents the given place 
of purchase and the value ∂L/∂S represents the propensity to search, i.e., propensity to substitute 
labor L for search S, the constraint is created by the core equality of marginal values of search 
derived from the satisficing decision procedure: 

 

w
∂L

∂S
= Q

∂P

∂S
(1)

 
 
The equilibrium price Pe becomes equal to the sum of consumers’ labor costs wL and 

transaction cost wS, or Pe=w(L+S): 
 

∂U / ∂H

∂U / ∂Q
= − w

∂P / ∂S
∂2L / ∂S∂H = − w

T∂P / ∂S
= w

w(L+ S)
= w

P
e

(2)
 

 
where the value T=1/∂2L/∂S∂H represent the time horizon until the similar purchase, or the 
commodity lifecycle. 

As we can see, the Equation (2) specifies the paradox formulated by P.Diamond that when 
search costs are positive the equilibrium price becomes equal to the monopoly price (Diamond 
1971). Moreover, the Equation (2) gives another view on home production where G.Becker’s model 
is still the dominant vector of analysis. Indeed, if we consider the household activity to be a specific 
form of search, the equilibrium price for the final product or the willingness to accept will be equal 
to the sum of purchase price of inputs PP, i.e., of labor costs wL, and transformation costs wS. 

Although the original values of the model ∂P/∂S and ∂L/∂S look unusual, their modeling 
tries not to forget the testament of A. Marshall, who told that “when a great many symbols have to 
be used, they become very laborious to any one but the writer himself” (Marshall 1920[1890], p.12). 
Sometimes such relative values are indispensable, especially when the original G.Stigler’s 
assumption of the diminishing marginal efficiency of search (Stigler 1961) is used (∂P/∂S<0; 

∂2P/∂S2>0), or when the behavior of the propensity to search is derived ((∂L/∂S<0; ∂2L/∂S2<0) 
(Malakhov 2014). However, the understanding of these relative values can be simplified by the 
graphical illustration of the interrelation between static (Qvariable;∂P/∂Sconst) implicit optimal 
decision and dynamic (Qconst;∂P/∂Svariable) explicit satisficing decision (Fig.1): 

  
Figure 1. Implicit optimal decision and explicit satisficing decision 

 
In addition, the satisficing decision increases real balances because the Equation (1) 

maximizes the precautionary reserve of money holdings R(S)=wL(S)-QP(S) with respect to the time 
of search. 

TH*

U (Q,H )

w
∂L/∂S
∂P/∂S

=Q*

L+S H

Q

− w

∂P/∂S
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The presentation of relatives values in absolute terms, |∂P/∂S| and |∂L/∂S| simplifies their 
mathematical treatment without logical losses. This tactic facilitates the comparative static analysis 
and we can easily derive marginal utilities of money income and money expenditures with respect 
to optimal values of consumption and leisure (Malakhov 2013): 

 
MU

w
= λ; (3.1)

MU
|∂P/∂S|

= −λ w

|∂P / ∂S|
(3.2)

 
 
The analysis of the second order cross partial derivatives, i.e, the change in the marginal 

utility of received money income with the change of the place of purchase, or ∂MUw /∂|∂P/∂S|, and 
the change in the marginal utility (disutility) of the habitual place of purchase with the change in 
money income, or ∂MU|∂P/∂S| /∂w, results in the equation that demonstrates the behavior of the 
marginal utility of money under the optimal consumption-leisure choice: 

 
eλ,|∂P/∂S| + eλ,w = e|∂P/∂S|.w -1   (4) 

 
Under the assumption of the diminishing efficiency of search the elasticity of price 

reduction e|∂P/∂S|.w  illustrates both the increase in the willingness to overpay and the decrease in 
time of search after the increase in the wage rate (|∂Pi/∂Si|>|∂Pj/∂Sj|� Pi>Pj;Si<Sj). Hence, it is 
always positive. When the value of the elasticity of price reduction e|∂P/∂S|.w is equal to one, we have 

 
eλ,|∂P/∂S| + eλ,w = 0   (5) 

 
The Equation (4) also enlightened the way for the comparative static analysis of the indirect 

utility function where subsequent satisficing decisions optimize consumption-leisure trade-offs with 
respect to changes in both parts of the constraint. The increase in the wage rate moves consumers 
from low-price stores to high-price stores. Indeed, the Equation (4) shows us that the indirect utility 
function depends on two variables in the following manner: 

 
v(w,|∂P/∂S|)= v(w,|∂P/∂S|(w))     (6) 

 
The total derivative of this utility function gives us the following: 
 

 
 
We see that when the price reduction is unit elastic (e|∂P/∂S|.w=1), the Equation (5) takes place 

and the utility stays constant, or dv/dw=0. And the following choice of the purchase price which is 
accompanied by a greater price reduction (e|∂P/∂S|.w>1) decreases the utility of consumption-leisure 
choice. The consumption growth is followed by the disproportionally important reduction in leisure 
time. 

 
2. Willingness to Overpay as Insurance Premium  
 
Usually, guarantees and insurance contracts increase both prices of purchases and price dispersion 

and we can await that guarantees and insurance contracts raise the equilibrium price reduction |∂P/∂S| that 
equalizes marginal costs of search with its marginal benefit.  

We can assume that the increase in the wage rate results not in the simple increase in the purchase 

dv(w,|∂P / ∂S | (w)) = dw(
∂v

∂w
|
|∂P/∂S|const

+ ∂v

∂ |∂P / ∂S|

∂ |∂P / ∂S|

∂w
); (7)

dv

dw
= λ − λ w

|∂P / ∂S |

∂ |∂P / ∂S |

∂w
= λ(1− e

|∂P/∂S|,w
)
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price with respect to the increased income but in the increase in the insurance premium, accompanied by 
the increase in price reduction. The consumer details his insurance policy and increases the insurance 
premium with every increase in the wage rate. Our assumption is really illustrative because here the 
consumer behaves like a homeowner who raises progressively the fence with any subsequent increase in 
income. And more insurance policy is detailed, the more efficient is the search, i.e., the greater is the 
absolute value of the equilibrium price reduction. 

The appearance of the saddle point in the utility function gives an answer to the question what the 
consumer should do in order to avoid the decrease in utility. Obviously, he should decrease relative price 
reduction i.e., to be… not more modest, but less ambitious with regard to purchase prices after the following 
increase in the wage rate. We see that the decrease in the willingness to overpay is really possible. The only 
way to increase both consumption and real balances is not to reduce absolute overpayments (the value 
∂|∂P/∂S|/∂w is always positive) but to reduce relative overpayments, or to make them less income elastic, 
i.e., e|∂P/∂S|.w=0,9; 0,8; 0,7… etc., other words, to accept incomplete insurance and guarantees for items to 
be bought. 

However, this change represents the change in the model of behavior – from risk aversion to risk 
seeking. Indeed, the prospect theory tells us that facing the inevitable loss, here the decrease in utility, the 
consumer should take risk (Kahneman and Tversky 1979). Hence, the utility function changes its shape and 
becomes close to the cubic parabola (Fig.2). 

 
Figure 2. Utility function under price dispersion 

 
 

3. Unwillingness to Overpay for Insurance as Driver of Risk Behavior 
 
When we determine the second derivative of the utility function, we should keep in mind the 

marginal utility of money income λ as well as the unwillingness to overpay (1-e|∂P/∂S|.w) also represent 
functions of two variables. We can omit labor-intensive intermediate calculations and present the second 
derivative directly in its total form and in its elasticity form: 

 

d2v

dw2
= dλ

dw
(1− e

|∂P/∂S|,w
) + λ

d(1− e
|∂P/∂S|,w

)

dw
(8)

 
d2v

dw2
= λ

w
(1− e

|∂P/∂S|,w
)(eλ ,w

+ eλ ,|∂P/∂S|
e

|∂P/∂S|,w
+ e

(1−e|∂P/∂S|,w),w
) (9)

 
 
The form of the total second derivative is very useful for the step-by-step analysis of changes in the 

model of behavior. The elasticity form, although its use is limited by critical points, is helpful in the 
derivation of the relative measure of risk aversion and in following optional high-order derivations of 
measures of prudence, which are omitted from the present analysis and left for analysts who are not afraid to 
work with relative values of the model. Thus, the relative Arrow-Pratt measure takes the following form: 

 

η = −(eλ ,w
+ eλ ,|∂P/∂S|

e
|∂P/∂S|,w

+ e
(1−e|∂P/∂S|,w),w

) (10)
 

 



Malakhov, S., 2014. Willingness to Overpay for Insurance and for Consumer Credit: Search and Risk Behavior Under Price Dispersion. 
Expert Journal of Economics, 2(3), pp. 109-119 

113 

Although we get here the second order elasticity, it is rather simple to understand it. We can denote 
the value (1-e|∂P/∂S|.w) as the unwillingness to overpay and consider its elasticity with respect to the wage rate. 
When the increase in wage rate decreases the unwillingness to overpay, the second derivative d2v/dw2 is 
strictly negative. Moreover, while the unwillingness to overpay is decreasing (e(1-e|∂P/∂S|.w),w<0), the absolute 
value of its elasticity e(1-e|∂P/∂S|.w),w is increasing.  And with the increase in absolute value of the elasticity of 
the unwillingness to overpay the relative risk aversion is increasing, i.e., the share of risky assets, i.e., 
unsecured consumption, is decreasing. Of course, it certainly happens because the subsequent growth in the 
wage rate and in the equilibrium value of price reduction always results in the increase in real balances, 
which follow the optimal consumption path of the indirect utility function. It means that the total elasticity of 
the marginal utility of money is negative, or (eλ,w +eλ,|∂P/∂S| e|∂P/∂S|.w) <0. The last assumption can be verified 
by the following transformation with the help of the Equation (4): 

 

eλ ,w
+ eλ ,|∂P/∂S|

e
|∂P/∂S|,w

= eλ ,w
+ eλ ,|∂P/∂S|

e
|∂P/∂S|,w

+ eλ ,|∂P/∂S|
− eλ ,|∂P/∂S|

= (e
|∂P/∂S|,w

−1)(1+ eλ ,|∂P/∂S|
) (11)

 
 
The price reduction elasticity of the marginal utility of money is positive, or eλ,|∂P/∂S|>0, because it 

simply states the growth in the marginal utility of money with increase in price of purchase. Hence, the 
Equation (11) shows us that, when e|∂P/∂S|.w <1, any increase in wage rate raises real balances and decreases 
the marginal utility of money because the total elasticity of the marginal utility of money is negative, or (eλ,w 
+eλ,|∂P/∂S| e|∂P/∂S|.w) <0.  

The behavior of the utility function at this stage is described by the following expressions: 
 

1-e|∂P/∂S|.w >0; λ >0; dλ/dw<0; de(1-e|∂P/∂S|.w),w/dw<0� d2v/dw2<<0     (12) 
 
Here the relative risk aversion is increasing because the consumer raises the overpayments or, in the 

case of insurance, makes the latter more and more detailed. The homeowner begins with insurance for the 
house and he details it with furniture and paintings. Once there is no object to be insured except the coffer 
with cash. And the consumer insures it by the following increase in the wage rate and he spends on the 
coffer’s insurance the total increase in income. This action means that neither consumption nor cash kept in 
the coffer are changed. The insurance policy becomes full or comprehensive. The elasticity of price 
reduction becomes equal to one (e|∂P/∂S|.w=1), the unwillingness to overpay becomes equal to zero (e(1-

e|∂P/∂S|.w),w =0), and, according to the Equation (5), the increasing marginal utility of money expenditures 
completely offsets the decreasing marginal utility of money income:  

 
eλ,w +eλ,|∂P/∂S| e|∂P/∂S|.w= eλ,|∂P/∂S| + eλ,w = 0     (13) 

 
This stationary point B also represents the decision node (Fig.2). If the consumer decides to re-insure 

his comprehensive insurance (e|∂P/∂S|.w>1) for the given level of consumption, he will decrease his real 
balances. The utility function will go down (dv/dw<0). Thus, the only way to increase both consumption and 
real balances is to accept incomplete insurance and guarantees for items to be bought. 

This decision results in the increase in the unwillingness to overpay e(1-e|∂P/∂S|.w),w. However, when the 
increase in the wage rate raises the unwillingness to overpay, the second derivative d2v/dw2 becomes 
positive. The consumer begins to seek risk: 

 
1-e|∂P/∂S|.w >0; λ >0; dλ/dw<0; de(1-e|∂P/∂S|.w),w/dw>>0;d2v/ dw2>0     (14) 

 
It happens because at the beginning of risk-seeking the positive (e(1-e|∂P/∂S|.w),w>0) elasticity of the 

unwillingness to overpay outweighs the total negative elasticity of the marginal utility of money, or  
(eλ,w +eλ,|∂P/∂S| e|∂P/∂S|.w) + e(1-e|∂P/∂S|.w),w  >0. 

 
Here we need some comments on the relationship between real balances and overpayments. The 

risk-seeking behavior means that the increase in consumption is not well secured. However, the insurance is 
provided not only by insurance policy but also by real balances, which could represent the precautionary 
savings. The risk-seeking model of behavior means that the total of precautionary savings and insurance 
policy is insufficient for the optimal level of consumption. It happens because here the relative increase in 
real balances is followed by the relative decrease in overpayments. Real balances as the tool of protection of 
consumption, i.e., of wealth, begin to substitute overpayments. 
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Here we come to the question whether precautionary savings and insurance are substitutes or 
complements. In spite of some analytical solutions of this problem (Ehrlich and Becker (1972)), this question 
is still open in the general economic analysis. Moreover, when this issue is studied, the attention is usually 
paid to health and social insurance (Hubbard, Skinner and Zeldes (1995), Guariglia and Rossi (2004)). Here 
we can only assume the substitutability between money balances and overpayments. The only reason for this 
assumption is the response of relative overpayments to the continuous decrease in the value of λ, i.e., in the 
marginal utility of increasing real balances. The economic sense of the decrease in the relative overpayments 
with respect to the decrease in the marginal utility of money, i.e., in the “price” of money, presumes the 
substitutability. In addition, the increase in relative overpayments with respect to the decrease in the 
marginal utility of money presumes that when the consumer is risk-averse, real balances and overpayments 
becomes complements from the standpoint of the protection of wealth. In any way, the rather harmonic 
assumption that precautionary savings and insurance are complements in the risk-aversion model and they 
are substitutes in the risk-seeking model needs, and we are going to see it, more profound analysis. 

The comeback from risk seeking to risk aversion is ambiguous. While the positive elasticity of the 
unwillingness to overpay e(1-e|∂P/∂S|.w),w  is decreasing, once it certainly matches the total negative elasticity of 
the marginal utility of money: 

 
(eλ,w +eλ,|∂P/∂S| e|∂P/∂S|.w) + e(1-e|∂P/∂S|.w),w  =0     (14) 

 
The analysis of the second derivative of the utility function discovers two possible outcomes from 

the risk neutrality. While the total elasticity of the marginal utility of money is always negative (eλ,w +eλ,|∂P/∂S| 

e|∂P/∂S|.w<0), the model of behavior depends here on the decision whether to continue to decrease relative 
overpayments and to increase the unwillingness to overpay (e(1-e|∂P/∂S|.w),w>0), or to increase relative 
overpayments and to decrease the unwillingness to overpay (e(1-e|∂P/∂S|.w),w<0). The continuous increase in real 
balances with the negative total elasticity of the marginal utility of money (eλ,w +eλ,|∂P/∂S| e|∂P/∂S|.w<0) provides 
the negative second derivative d2v/dw2<0  for both outcomes. However, the increase in the unwillingness to 
overpay, i.e., in the unwillingness to detail insurance policy, results in the “steeper” sortie from the risk 
neutrality. We can verify this fact without laborious calculations of high-order derivatives but with simple 
back-on-the envelope sketch. The increase in the unwillingness to overpay (e(1-e|∂P/∂S|.w),w>0) simply states the 
fact that the consumer relies more on precautionary savings than on insurance and he increases the share of 
risky assets, i.e., the share of uninsured commodities or, more precisely, the share of commodities with 
incomplete insurance and guarantees. Hence, his relative risk aversion becomes decreasing. On the other 
hand, if he chooses the extension of insurance policy or the decrease in the unwillingness to overpay, he 
increases his risk aversion. The option to decrease the unwillingness to overpay and to detail insurance 
policies (e(1-e|∂P/∂S|.w),w<0)  results in the flat transformation of the utility curve. And with the increasing 
relative risk aversion the consumer comes again to the next saddle point with the unit elasticity of the price 
reduction e|∂P/∂S|.w=1 that represents the next decision node (Fig.3): 

 
Figure 3. Decreasing vs. increasing relative risk aversion 

 
The path of the decreasing relative risk aversion is more intriguing. There, the consumer can 

continue to decrease relative overpayments until the moment when the value of price reduction |∂P/∂S| 
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becomes definitely constant. At this moment the elasticity of the unwillingness to pay e(1-e|∂P/∂S|.w),w  as well as 
the elasticity of price reduction e|∂P/∂S|.w becomes equal to zero, and the derivatives of the utility function gets 
its “true” values, or dv/dw=λ and d2v/dw2=dλ/dw, i.e., the marginal utility of income becomes unit elastic. 
Evidently, the marginal utility of money λ is equal here to the opportunity costs of holding cash. However, 
while the value of price reduction |∂P/∂S| doesn’t affect here the marginal utility of money in dynamics 
because its elasticity is equal to zero, it doesn’t disappear at all and continues to bother the consumer by its 
constant value. Here this residual constant |∂P/∂S| value can represent the prolongation of the insurance 
policy for the coffer, leaving all other wealth unsecured. 

The insurance for the coffer simply substitutes the costs of illiquidity in the model of the 
precautionary demand for cash (Whalen 1966, p.316). Thus, the “true” value of money is decreased by the 
costs of guarding the cash. This assumption corresponds to M.Friedman’s reasoning on the optimum quantity 
of money:  

“The amount held will, at the margin, reduce utility – because of concern about the safety of the 
cash, perhaps, or because of pecuniary costs of storing and guarding the cash.” (Friedman 2005 [1969], 
p.18). 

Indeed, if the consumer follows this path once he could come to the point M of the optimum quantity 
of money. The volume of precautionary saving with respect to consumption becomes so important that it 
protects the wealth against any disaster. However, if the marginal utility of the optimum quantity of money 
equals to zero, the consumer doesn’t need to insure it.  

These considerations raises the question why the consumer cannot change the manner of risk 
aversion and get the “true” value of money at low levels of income, i.e., why the shift from the increasing to 
the decreasing risk aversion cannot take place at low values of relative overpayments e|∂P/∂S|.w<<1 . Moreover, 
it seems that in this case the consumer could avoid saddle points and he could reproduce the exact contour of 
the Friedman-Savage’s utility function (Friedman and Savage 1948). However, in this case high values of 
the marginal utility of real balances of low-income levels could hardly be offset by the marginal decrease in 
the unwillingness to overpay and the consumer will come to the saddle point where he will meet 
“catastrophic” consequences of both imprudence and over prudence. 

 
4. Economic and Mathematical Catastrophes: Veblen Effect and Family Altruism 
 
When G.Becker issued his famous rationalization of family altruism, he stressed the importance of 

the role of security:  
Therefore, altruism helps families insure their members against disasters and other consequences of 

uncertainty: each member of an altruistic family is partly insured because all other members are induced to 
bear some of the burden through changes in contributions from the altruist (Becker 1981, pp.3-4).  

Hence, the family altruism can be introduced in our model as an additional insurance. There are two 
possible outcomes for this extra insurance from the saddle point. 

We can reproduce the decrease in the individual utility function of the head of the family when 
relative overpayments really become disproportionate to his individual security, or e|∂P/∂S|.w>1. The extra 
insurance is provided by the decrease in real balances (∂λ/∂w>0). However, the following set of equations 
demonstrates that the decrease in utility (∂v/∂w<0) is accompanied there not by the risk-seeking behavior but 
by risk-aversion (∂2v/∂w2<0). The utility function takes the form of parabola: 

1-e|∂P/∂S|.w >0; λ >0; dλ/dw>0; de(1-e|∂P/∂S|.w),w/dw<<0�d2v/dw2<0     (15) 
Here we could wait for the moment when money balances become equal to zero and the family 

changes her model of behavior. Unfortunately, in the absence of budget constraints the family could borrow. 
In this case the marginal utility of money income λ becomes negative. However, when the marginal utility of 
money income λ becomes negative the head of the family can increase his utility if he continues to increase 
overpayments (λ<0; (1-e|∂P/∂S|.w) <0;dv/dw>0). 

Here the head of the family reproduces the Veblen effect. The previous analysis discovered the 
correspondence between negative marginal utility of money and the extra overpayments (Malakhov 2013)†.   
This is the first “pitfall” the stationary point B prepares for imprudent consumers. Moreover, from the 
individual point of view the Veblen-effect-like leaving of the saddle point looks more positive than the 
increase in the unwillingness to overpay. This way can provide more utility until the moment when real 
balances will be exhausted or the borrowing will be closed and the comeback either to risk aversion or to 

                                            
† If the attribute of the negative marginal utility of money represents a subjective value, the Veblen effect decision could be estimeed from the 
external satisficing point of view as the decision that decreases the utility. 
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risk-seeking behavior will take place (Fig.4). In addition, only here we can definitely talk about maximizing 
behavior. Indeed, if the aspiration level motivates the consumer to get from the search more than from the 
labor, i.e., to get marginal savings on purchase greater than the wage rate, the consumer immediately follows 
the Veblen effect (Malakhov 2013): 

 

 
Figure 4. The option of Veblen effect in risk-seeking behavior 

 
The equilibrium at the saddle point B is unstable. The consumer can take either maximizing or 

satisficing decision. The maximizing decision results in the Veblen effect and the satisficing decision 
produces the ordinary risk seeking behavior. However, the maximizing decision is the decision to purchase a 
“bad” item with negative marginal utility due to the value λ<0. The rules of the optimization of 
consumption-leisure choice stop working, the constraint line takes the north-east direction, and the increase 
in utility happens only due to an important increase in leisure time that increases the purchase price and 
compensates the consumption of “bad” item. It really happens when imprudent young family considers 
holidays on the seaside or in mountains to be vital and parents agree to sponsor vacations for grandchildren. 
Hélas, in the search model of behavior even skiing might become “bad”. 

The occurrence of Veblen effect with regard to the previous reasoning on the optimum quantity of 
money tells us that Veblen effect can take place at rather modest levels of income where consumption is far 
from satiation. However, although this scenario can take place, it does not seem well compatible with the 
description of the individual utility function within the family. There is another possibility to present family 
altruism. We can pretend the head of the family to be more “economic man” and to separate altruism from 
the individual utility function. If we take the factor of giving as the share of the individual wage rate, we get 
the following utility function vg(w)=v(w)-gw. However, there we automatically get the other “pitfall” or the 
mathematical “fold”-type catastrophe due to the existence of the saddle point B and to its unstable 
equilibrium in the original utility function (Fig.5): 

 

 
Figure 5. ”Fold” catastrophe of family altruism 

 
In this case the decrease in the utility function starts at point A when the consumer, the head of the 

family, is still risk averse and he continues to make protection of his wealth by the increasing real balances 
and by increasing overpayments. The continuous increase in overpayments discovers the unwillingness of 
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the head of the family to economize. Here, the behavior looks like “pure” altruism. However, once the head 
of the family changes the model of his behavior and he begins to make risky decisions. It happens at point B 
when he passes the saddle point of the original utility function with the unit elastic price reduction 
(e|∂P/∂S|.w=1). The following increasing unwillingness to overpay gives an idea that the nature of his altruism 
has been changed. The head of the family becomes more “pragmatic”.  Although his altruism does not 
exhausted, his purchase decisions become more prudent. They begin to look like investments. The 
investments in family reach its peak at point C. Finally, the head of the family begins to feel again the 
increase in his utility function and at point D he no longer suffers from his altruism, or he finally gets returns 
on investments: 

“Altruistic parents might not have more children than selfish parents, but they invest more in the 
human capital or quality of children because the utility of altruistic parents is raised by investment returns 
that accrue to their children.” (Becker 1981, p.12). 

Indeed, the movement of the utility curve from point A to point D reminds the parental behavior 
from the birth of a child till the go-out of a young man from the nest. At the beginning parents do not 
economize on purchases for babies. They are trying to buy everything of high quality and with guarantees. 
Once, at point B, these purchases take the form of investments, which even in prudent manner lead to point 
C in the bottom due to their importance. However, the earlier decision at point B to reduce relative 
overpayments continues to work and finally it pulls out the head of the family from the “pitfall”. ‡ 

 
5. Interest rate and willingness to overpay for consumer credit 
 
The common question addressed to the model presented here why it doesn’t follow the original 

G.Stigler’s presentation of the equality of marginal values of search with respect to the interest rate. Indeed, 
the core equation of the model could be presented in that manner: 

i × w
∂L

∂S
= Q

∂P

∂S
(16)

 
However, even G.Stigler agreed, that interest rate made “expected reduction in price…be smaller 

than the smallest unit of currency” (Stigler 1961, p.219). While the dynamics of the satisficing decision 
procedure is short, the model assumes that consumers usually ignore interest rate during the search. If the 
satisficing consumer doesn’t calculate marginal values of search, why he should compute decimals of 
interest rate and of probabilities? 

However, the methodological concern about interest rate can be gratified if we envisage the risk of 
delay of consumption, i.e., the risk of unexpected rise in prices, and explain overpayments as payments for 
consumer credit. Other words, interest rate increases price dispersion as well as marginal savings on 
purchase. The greater is an item under consumer credit, the greater are the marginal savings on this purchase. 
In this case the comprehensive insurance is transformed into the comprehensive consumer credit and the 
extra comprehensive insurance (e|∂P/∂S|.w>1) is transformed into the refinancing of existing debt.  

When the consumer buys an item against coming increase in the wage rate it means that the value 
e|∂P/∂S|.w=1 also is coming. This consideration with respect to consumer credit tells us that saddle point with 
its risk neutrality is more common economic phenomenon than it was seen from the point of view of 
insurance. People hold cash for everyday expenses where the cash represents the residual of interest 
payments. And at e|∂P/∂S|.w=1 level the total increase in income is going to finance the debt. Neither 
consumption nor real balances are changed. After that, if the consumer wants to buy another big-ticket item 
he should either refinance current debt or search this item more intensively in order to decrease relative 
overpayments, i.e., to find more beneficial credit for the new purchase. The first way decreases the utility 
and the second way increases risk of unexpected rise in prices during the search.  

We remember that while the positive elasticity of the unwillingness to overpay e(1-e|∂P/∂S|.w),w  is 
decreasing, once it certainly matches the total negative elasticity of the marginal utility of money and the 
second derivative of the utility function becomes equal to zero, or d2v/dw2=0. The following increase in the 
wage rate again gives a chance to expand consumer credit by the increase in relative overpayments. Facing 
price uncertainty, the consumer chooses this way of the increasing relative risk aversion. But we already 
                                            
‡ When G.Becker cited King Lear’s Fool in order to illustrate the Rotten Kid Theorem by the parental willingness to delay contributions until last 
stage of life he did not take into account the possibility of saddle points in the parental utility function. We have seen that if the consumer continues to 
increase overpayments without change in the model of behavior at the saddle point his utility goes down infinitely.  Once upon a time King Lear 
simply missed that point. And from the literature point of view it would be better here to remember d’Artagnan-father, who contributed to his son 
only quinze écus, his horse, and some parental advices.  
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know that real balances at this moment can also protect consumption. If the consumer chooses the decreasing 
relative risk aversion path, once overpayments become definitely constant. Here, the constant |∂P/∂S| value 
of consumer credit could mean that products are delivered every day by a boy from the neighboring grocery 
store and once a month the consumer signs a check to the grocer like he renews the insurance policy for the 
coffer every year. 

The constant |∂P/∂S| value and the constant place of purchase mean that the consumer is satiated 
by items that could be bought in other places, i.e., by items that could produce another marginal savings 
on purchase.  

In addition, the consumer also can get the optimum quantity of money but he should decrease for 
that liquidity costs to the zero level, for example, to give to the grocer a right to debit his current account. 
With that the consumer reproduces the optimal precautionary model of money holdings – credit is not used, 
liquidity costs are zero, and the marginal utility of money also equals to zero (Fenestra 1986, p. 283). 

However, this theoretical assumption is really illustrative. There are more realistic paths and both of 
them are well known to us because they represent “catastrophic” solutions. Coming to very low values of the 
marginal utility of money, either the consumer buys an extraordinary item and, therefore, increases the time 
of leisure to consume it or he starts the practice of charity that might take a form of the sponsorship for 
venture investments. 

 
6. Conclusion 

 
The analysis of consumer behavior presented in this paper discovers the methodological power of 

relative values, which are produced by the process of search. The consumer’s search for beneficial price 
reduction can be interpreted as the search for reduction in insurance or in interest payments.  

The motivation to reduce time of search and to increase quality in consumption after the increase in 
the wage rate inevitably leads a consumer to the saddle point of the utility function. And the equilibrium in 
the saddle point is unstable. The consumer can follow maximizing path where he produces the Veblen effect 
or he can follow common satisficing path where he should take risk. However, even the satisficing path 
comes to the economic catastrophe of the decrease in utility if consumer takes into account the factor of 
giving or family altruism. 

The model also provides a graphical difference between increasing and decreasing relative risk 
aversion. The increasing relative risk aversion path could come to the new saddle point of comprehensive 
insurance or complete consumer credit and the decreasing relative risk aversion could come to the optimum 
quantity of money. 

In addition, this approach can revive the discussion on the optimum quantity of money with an 
interesting argument. Indeed, when overpayments become constant they could represent not direct interest 
payments but some fixed expenditures the consumer pays to the government to finance the interest payments 
on money (Bewley 1983, Mehrling 1995).  

The question of the limp-sum taxation leads to the understanding that the model presented here 
could be useful in the analysis of the optimal taxation. If we substitute in the individual utility function the 
factor of giving by income tax we also get the “fold”-type catastrophe. However, if one tries to go further 
and to explain overpayments by VAT or excise tax, the coming trade-off between income taxes and 
overpayments should be examined with prudence. 

 
7. References 
 

Becker G.S., 1981. Altruism in the Family and Selfishness in the Market Place, Economica, New Series, 48 
(189), pp.1-15. 

Bewley, T., 1983. A Difficulty with the Optimum Quantity of Money, Econometrica, 51, 5, pp.1485-1504. 
Diamond, P., 1971. A Model of Price Adjustment, Journal of Economic Theory, 3, pp.156-168. 
Ehrlich, I., Becker, G.S., 1972. Market Insurance, Self-Insurance and Self-Protection Journal of Political 

Economy. 80(4), pp.623-648. 
Fenestra, R., 1986. Functional equivalence between Liquidity Costs and the Utility of Money, Journal of 

Monetary Economics, 17, pp.271-291. 
Friedman, M., Savage, L.J., 1948. The Utility Analysis of Choices Involving Risk, Journal of Political 

Economy, 56, pp.279-304. 
Friedman, M., 2005 [1969]. The optimum quantity of money. Transaction Publishers. 
Guariglia, A., Rossi, M., 2004. Private medical insurance and saving: evidence from the British Household 



Malakhov, S., 2014. Willingness to Overpay for Insurance and for Consumer Credit: Search and Risk Behavior Under Price Dispersion. 
Expert Journal of Economics, 2(3), pp. 109-119 

119 

Panel Survey Journal of Health Economics. 23, pp.761-783. 
Hubbard, R.G., Skinner, J., Zelders, P., 1995) Precautionary Saving and Social Insurance. Journal of 

Political Economy. 103(2), pp.360-99. 
Kahneman, D., Tversky,А., 1979. Prospect Theory: An Analysis of Decision under Risk, Econometrica, 

XVLII (1979), pp.263-291. 
Mehrling, P., 1995. A Note on the Optimum Quantity of Money, Journal of Mathematical Economics, 24, 

pp.249-258. 
Malakhov, S., 2013. Money Flexibility and Optimal Consumption-Leisure Choice Theoretical and Practical 

Research in Economic Fields, IV (1), pp.77-88, http://www.asers.eu/asers_files/tpref/ 
TPREF%20Volume%20IV%20Issue%201_7_%20Summer%202013_last.pdf 

Malakhov, S., 2014. Satisficing Decision Procedure and Optimal Consumption-Leisure Choice. 
International Journal of Social Science Research, 2(2), pp.138-151, DOI:10.5296/ijssr.v2i2.6158 

Marshall, A., 1920 [1890]. Principles of Economics. An Introductory Volume. London: Macmillan and Co., 
Ltd. 

Stigler, J., 1961.The Economics of Information. Journal of Political Economy, 69(3), pp.213-225. 
Whalen, E., 1966. A Rationalization for the Precautionary Demand for Cash, Quarterly Journal of 

Economics, 80 (2), pp.314-324. 
 
 
 
 

 

Creative Commons Attribution 4.0 International License. 
CC BY 

 
 
 
 
 
 



EJ 
Exper t  J o urna l  o f  Eco no mi c s  (2 0 1 4 )  2 ,  120-132 
© 2014  The Au thors .  Pub l i sh ed  b y Sp r in t  In ves t i f y .  ISSN 2359-7704 

Economics .Exp er tJourna ls .com 
 

120 

 
 

Effects of Measurement Errors on Population Estimates from Samples 
Generated from a Stratified Population through 

Systematic Sampling Technique 
 
 
 

Abel OUKO1*, Cheruiyot W. KIPKOECH2, Emily KIRIMI 3 
 

1The East African University, Kenya 
2Maasai Mara University, Kenya 
3Technical University of Kenya 

 
 
 

In various surveys, presence of measurement errors has led to misleading results in 
estimation of various population parameters. This study indicates the effects of 
measurement errors on estimates of population total and population variance when 
samples are drawn using systematic sampling technique from a stratified population. 
A finite population was generated through simulation. The population was then 
stratified into four strata followed by generation of ten samples in each of them using 
systematic sampling technique. In each stratum a sample was picked at random. The 
findings of this work indicated that systematic errors affected the accuracy of the 
estimates by overestimating both the population total and the population variance. 
Random errors only added variability to the data but their effect on the estimates of 
the population total and population variance was not that profound.  
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1. Introduction 
 

The ultimate goal of each survey is to obtain information about the population under study. The theory 
of sample survey as developed during the past several decades provides us with various kinds of scientific 
tools for drawing samples and making valid inference about the population parameters of interest. According 
to Koninj (1973), in measurement of physical quantities the personnel and devices that we have to use may 
not give as precise measurements as the best available. Measurement errors cannot be completely eliminated 
but minimized to an extent which their effects on survey results are not that profound. Basic contributions to 
the methodology of measurement error models were given by Mahalanobis (1946), Hansen (1946) and 
Sukhatme and Seth (1952) have examined the question of non sampling errors in census and survey work and 
they have furnished mathematical models for such errors. The objective of this study was to investigate the 
effects of measurement errors on the estimates of population total and population variance when samples are 
drawn from a stratified population using systematic sampling technique. The contribution of this study is to 
establish more weight as to why systematic errors should be minimized if at all valid results are to be obtained.  
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2. Systematic sampling 

 
This is a sample selection technique in which sample members are selected from a given population 

according to a random starting point and a fixed periodic interval. Systematic sampling is still thought of as 
being random, as long as the periodic interval is determined beforehand and the starting point is random. A 
common way of selecting members into the sample using systematic sampling is simply by dividing the total 
number of units in the population by the desired number of units for the sample. The result of the 
division serves as the marker for selecting sample units from within the given population. Systematic sampling 
is to be applied only when the given population is logically homogeneous because systematic sample units are 
uniformly distributed over the population. In some cases systematic sampling is preferred since it spreads the 
sample more evenly over the population and easier to conduct. 

 
Table 1. Composition of the k systematic samples. 

Sample no. 1 2          … i          … K 
 

1y   2y            … 
iy            … 

ky   

 
1ky +   2ky +            … 

k iy +            … 
2ky   

    …   …          …   …          …   … 
 

( )1 1n ky − +  ( )1 2n ky − +           … 
( )1 3n ky − +           … 

nky   

Means 
1y

−
 2y

−
 

         … 
iy

−
 

         … 
ky

−
 

 
2.1. Stratified Systematic sampling. 
 
This is whereby the finite population under study is divided into relatively homogeneous groups 

referred to as strata and then systematic sampling is carried out in each stratum to generate samples.  
 

Notations: 

hN - Total number of units in stratum h where {h =1, 2, ..., H} 

hn - Number of units in a sample drawn from stratum h 

hkµ - The true value of the thk  unit in stratum h. 

hky - is the observed value of the thk   in stratum h. 

Note that 1 2 ........ HN N N N= + + +  

 
3. Sampling design 
 
In the theory of finite population sampling, a sampling design specifies for every possible sample its 

probability of being drawn. It is convenient to have special notation for this probability which in this case will 
be P(s). 

In other words we assume there is a function P (.) such that P(s) gives the probability of selecting 
specified samples under the scheme in use. The function P (.) will be referred to as sampling design. 
 

4. The Simple Measurement Model 
 
In this case we would like to formulate a statistical model for measurements made on elements of a 

sample from a finite population. Consider a finite population, U = {1…, k,…, N}.It is assumed that for each 
elementk U∈  , there exists a true value kµ  and that the objective is to estimate the population total of these 

true values, 

kU
tµ µ=∑  
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A sample s of size sn  is selected from U by a given probability sampling design( ).p . The idea is to 

obtain the true value kµ  for each elementk s∈ , but what we actually obtain through the measurement 

procedure are the observed values ky  for k s∈ .The observed ky  is composed of the true value kµ  and a 

random error or both random error and systematic error k ky µ− . For lack of better values, ky  is used in the 

estimation. For a given sample s, the random variables ( )ky k s∈  are assumed to have a certain joint 

probability distribution (conditional on s), called a measurement model denoted by m. In this case we consider 
our survey as a two stage process whereby the first stage involves the sample selection, which results in a 
selected sample s and the second stage involves the measurement procedure, which generates an observed 
value ky  for eachk s∈ . When evaluating expectations and variances with respect to the two stages jointly, 

the conditional argument is useful. As for the expected values, 

( ) ( ). . /pm p mE E E s=     

Where ( ). /mE s  denotes conditional expectation with respect to the measurement model m, for a 

given sample s, ( ).pE denotes expectation with respect to the sample design ( ).p  and ( ).pmE denotes 

expectation with respect to sampling design and measurement model jointly. 
Similarly, for the joint variance, called the pm-variance or the total variance, we have            

( ) ( ) ( ). . / . /pm p m p mV E V s V E s= +        

Where ( ). /mV s denotes conditional variance with respect to the model m, given s, ( ).pV denotes 

variance with respect to ( ).P  and ( ).pmV denotes variance with respect to ( ).P  and m jointly. 

We specify further the model m. For element k and l belonging to the same sample s, the first and second 
moments are 

( )/k m kE y sµ =  

( )2 /k m kV y sσ =  

And   ( ), /kl m k lC y y sσ =
 

 
5. Measurement errors. 
 
Measurement is the basis of any scientific study. All measurements are, however, approximate values 

(not true values) within the limitation of measuring device, measuring environment, process of measurement 
and human error. Several measurements of the same quality on the same subject will not in general be the 
same. 

Measurement errors refer to errors in survey responses arising from the method of data collection, the 
respondent or the questionnaire. They include the errors in a survey response as a result of respondents 
confusion, ignorance, carelessness, or dishonesty; the errors attributable to the interviewer, perhaps as a 
consequence of the poor or inadequate training, prior expectations regarding respondents’ response etc. These 
measurement errors end up causing a considerable effect on survey estimates. These errors are broadly 
classified in two categories which are systematic errors and random errors 

Systematic errors are biases in measurement which lead to the situation where the mean of many 
separate measurements differs significantly from the actual value of the measured attribute. All measurements 
are prone to systematic errors, often of several different types. The errors of this category are characterized by 
deviation in one direction from the true value. Systematic errors may result from; Usage of faulty instrument, 
Usage of faulty measuring process and Personal bias. Clearly this type of error cannot be minimized by 
repeated measurements. Systematic errors can therefore lead to either overestimation or underestimation of 
the desired population parameters. 

Random errors are errors in measurement that lead to measurable values being inconsistent when 
repeated measures of a constant attribute or quantity are taken. Random errors unlike systematic errors are not 
unidirectional i.e. some measurements are higher while some are lower than the true value. Another 
distinguishing aspect of random errors is that it is not biased. It is normally present because of the limitation 
of the instrument in hand and the limitation of the part of the human ability. No human being can repeat an 
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action in exactly the same manner. Hence it is likely that the same person reports different values with the 
same instrument, which measures quality correctly. This error is caused by any factor that randomly affects 
the sample. Random errors add variability to the data but do not affect the average performance for the group. 
This is why at times it is regarded as ‘noise’. 
 

5.1. Mathematical model for measurement errors. 
According to Cochran (1977), we assume a large number of independent repetitions of the 

measurement on the ith unit are possible. Let iyα  be the value obtained in the thα  repetition. 

Then                 i i iy eα αµ= +
                                                                                                  

Where            iµ = true value  

ieα = measurement error    

 

Where the expectation ofije is zero and variance is2
iσ . 

[ ]

[ ] 2

0i

i i

E e

Var e

α

α σ

=

=

 

 
Therefore, 

[ ]

[ ] 2

/

/

i i

i i

E y i

V y i

α

α

µ

σ

=

=

                                                                                                   

 
6. Inclusion probability in a stratified population 

 
Suppose we have a stratified population containing H number of strata. If we take one stratum denoted 

by h, our indicator variable becomes, 

1

0
( )

thif the k unit is included in the sample from stratum h

hk
otherwise

I s
= 


 

Our first order inclusion probability is denoted by hkπ  which denotes the probability that element k 

from stratum h is included into the sample. In the case of systematic sampling, because each element k belongs 
to one of the ' 'ha  equally probable systematic samples in stratum ‘h’, (where ha  is the sampling interval in 

stratum h.) 
1

hk
ha

π =  

The second order inclusion probability is denoted by hklπ  which refers to the probability that both 

elements ‘k’ and ‘l’ from stratum h are included into the sample. Under systematic sampling in stratum h 

1

0

h

if k and l from stratum h are in same systematic sample
a

hkl

otherwise

π


= 



 

 
The expectation and variance of  ( )hkI s  are obtained as follows, 
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[ ( )]

[ ( )] (1 )
hk hk

hk hk hk

E I s

V I s

π
π π

=
= −  

 Covariance  

cov[ ]hk hl hkl hk hlI I π π π= −
 

Since in stratum h our sampling interval is ha  we will have ha  systematic samples in the stratum 

indicated by rs where 1, 2,..., hr a=                    

 
7. Horvitz Thompson estimator in a Stratified Population 
 
According to Horvitz and Thompson (1952), the estimator of the population total is given by  

                                    
1 1

hnH
hk

HT

h k hk

y
t

π
∧

= =

=∑∑
                                                                                  

Its variance is given by, 

                                                ( ) ( )
2

1 1 1 1

1
h h hN N NH H

hk hk hl
HT hk hkl hk hl

h k h k k lhk hk hl

y y y
V t π π π π

π π π
∧

= = = = ≠

  = − + − 
 

∑∑ ∑∑∑               

 

 
According to Sarndal (1992) there is no unbiased estimator of the variance of estimated population 

total when a sample is generated using systematic sampling technique. A precise estimator below was then 
chosen 

                                     

1

2 2

1

2

1

1

1

r

r rr

H

HT h hHT

h

H
h

HT h hs
h h

hs hk hshs
h

V t V t

f
V t N S

n

where S y y
n

∧ ∧ ∧ ∧

=

∧ ∧

=

−

   =   
   

−  = 
 

 = − −  

∑

∑

∑

  

Where h
h

h

n
f

N
=  represents the sampling fraction 

                                         
8. The Mean Square Error (MSE) 

 
The mean square error (MSE) of an estimator is one of the many ways to quantify the difference 

between values implied by an estimator and the true values of the quantity being estimated. The difference 
occurs because of randomness or because the estimator does not account for information that could produce a 
more accurate estimate. In order to compare a biased estimate with unbiased estimate or two estimates that 
have different amounts of bias, a useful criterion is the ‘mean square error’ of the estimate measured from the 
population value that is being estimated. Formally, 

( )

( ) ( )

( )

22

2
2

2

2

MSE E E m m

E m m E m m

Variance of bias

µ µ µ µ µ

µ µ µ µ

µ

∧ ∧ ∧

∧ ∧

∧

      = − = − + −           

   = − + − − + −   
   

 = + 
 
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The cross product term varnishes since 0E mµ
∧ − = 

 
. The use of the MSE as a criterion of the 

accuracy of an estimate amounts to regarding two estimates that have the same MSE as equivalent. This is not 

strictly correct because the frequency distribution of errors µ µ
∧ − 

 
 of different sizes will not be the same for 

the two estimates if they have different amounts of bias.  
 

9. Total variance of the estimator of the population total in absence of systematic errors 
 

The total variance in the absence of systematic errors is obtained as follows. Since our population is 
stratified our measurement model is hk hk hky eµ= +   

Where                  

( )
( )

( )

2

/

/

/ ,

m hk hk

m hk hk

m hk hl hkl

E y s k s

V y s k s

Cov y y s k l s

µ

σ
σ

= ∈

= ∈

= ∈
 

 
The total variance is given by 

 

/ /HT HT HTpm p m p mV t V E t s E V t s
∧ ∧ ∧        = +                

 

Where 

1

1

1 1

2

2
1 1 1 , 1

2

1 1 1 , 1

h

ah h h h

r

ah h h h

r

nH
hk

HTp m p m
h k hk

sn n nH H
hk hkl

p
h k h k l s k k lhk hk hl

sN N NH H
hk hkl hkl

h k h k l s k k lhk hk hl

y
E V t E V

E

π

σ σ
π π π

σ σ π
π π π

=

=

∧

= =

= = = ∈ = ≠

= = = ∈ = ≠

     =          

 
= +  

 

= +

∑∑

∑∑ ∑ ∑ ∑∑

∑∑ ∑ ∑ ∑∑

 

  

( ) ( )
1

1 1

1 1

2

1 1 1 , 1

1

h

h

ah h h h

r

nH
hk

HTp m p m
h k hk

nH
hk

p
h k hk

sN N NH H
hkl hk hlhk

hk hk hl
h k h k l s k k lhk hk hl

y
V E t V E

V

π

µ
π

π π πµ π µ µ
π π π

=

∧

= =

= =

= = = ∈ = ≠

     =          

 
=  

 

−
= − +

∑∑

∑∑

∑∑ ∑ ∑ ∑∑              

Therefore the total variance in absence of systematic errors is given by 

( ) ( )
1 1

2 2

1 1 1 , 1 1 1 1 , 1

1
a ah h h h h h h h

r r

s sN N N N N NH H H H
hkl hk hlhk hkl hkl hk

HTpm hk hk hl
h k h k l s k k l h k h k l s k k lhk hk hl hk hk hl

V t
π π πσ σ π µ π µ µ

π π π π π π
= =

∧

= = = ∈ = ≠ = = = ∈ = ≠

− = + + − + 
 

∑∑ ∑∑∑∑ ∑∑ ∑∑∑∑  
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By replacing both first and second order inclusion probabilities with 
1

ha
 the variance becomes 

( ) ( )
1 1

2 2

1 1 1 , 1 1 1 1 , 1

1 1
a ah h h h h h h h

r r

s sN N N N N NH H H H

HTpm h hk h hkl h hk h hk hl
h k h k l s h k l h k h k l s k k l

V t a a a aσ σ µ µ µ
= =

∧

= = = ∈ = ≠ = = = ∈ = ≠

 = + + − + − 
 

∑∑ ∑∑∑∑ ∑∑ ∑∑∑∑  

 
   

10. The mathematical model for measurement of errors in stratified population 
 

Since our population is stratified, the model becomes 

hk hk hky eµ= +  

hkµ  - represents the true value of unit k in stratum h 

hke  - represents the measurement error term of unit k in stratum h 

 

( )/m hk hk hkE y s b k sµ∴ = + ∈
 

Where hkb  refers to the bias term 

( ) 2/m hk hkV y s k sσ= ∈  

 

The covariance between thk  and thl  unit is 

( ) ( ) ( )/ ,m hk hl hk hk hk hkCov y y k l s E y E Y y E y∈ = − −        

                                        

( )( )
( )

( )/ ,

hk hk hl hl

hk hl

m hk hl hkl

E e b e b

Cov e e

Cov y y k l s σ

= − −

=

∴ ∈ =
                                  

                                  

 
11. Decomposition of the mean square error. 

 
In this case we will consider the Horvitz Thompson estimator and the effect of measurement errors on 

its accuracy. We will decompose the mean square error into components, assuming that the measurements 

obey the simple measurement model ‘m’ as stated before. The mean square error of HTt
∧

 can be written as 
the sum of the total variance and squared bias. 

                  

2

HT HT HTpm pm pmMSE t V t B t
∧ ∧ ∧      = +            

 

The total variance is given by     
2

HT HT HTpm pm pmV t E t E t
∧ ∧ ∧    = −        

 

The bias is given by  
HT HTpm pmB t E t tµ

∧ ∧   = −   
     

This is called the measurement bias, which arises when expected measurement values on elements do 
not agree with true values. Variance term can be decomposed as follows 

 

                              

1 2/ /HT HT HTpm p m p mV t V E t s E V t s V V
∧ ∧ ∧        = + = +                
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The first component 1V  is referred to as the sampling variance which is zero in the case of complete 

enumeration whereas the second component  2V  is referred to as the measurement variance. The Horvitz 

Thompson estimator for the population total in this case will be 

1 1

hnH
hk

HT

h k hk

y
t

π
∧

= =

=∑∑                                                                                            

But, 

[ ]

[ ]
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1 1 1 1

sin

h

h

h

h

h h

nH
hk
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h k hk

nH
hk

p hk hk hk
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hk p hk hk
h k

N NH H

hk hk
h k h k

y
E t E E

g
E where g b

g
E I

g ce E I

b

π

µ
π

π

π

µ

∧

= =

= =

= =

= =

= = = =

    =    
    

 
= = + 

 

=

= =

= +

∑∑

∑∑

∑∑

∑∑

∑∑ ∑∑
 

 
From the decomposition of the variance term, we have 1 2&V V where    
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V
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π

π
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∧
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      = =            
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 
=  

 
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∑ ∑
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1
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1
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Thus the total variance in presence of measurement errors is 
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Under systematic sampling in populations with stratification as previously obtained the inclusion 

probabilities are: 
1
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ha

π =  

1

0

h

if k and l from stratum h are in same systematic sample
a

hkl

if k and l from stratum h are in different systematic samples

π


= 



 

We then substitute these probabilities in 
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We then replace both the first and second order inclusion probabilities with 
1

ha
 to obtain 
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12. Simulation of a finite population 

 
Visual basic programming language along with Microsoft access were used to generate a finite 

population of size N=1000. A population was simulated containing true values ranging from 20 to 90 inclusive. 
The true values had a normal distribution with a mean of 55 and a variance of 100. The population was then 
subdivided into four strata. This was done by first arranging all the population units in ascending order. The 
first 300 units were selected to constitute the first stratum and the following 250 units were selected to 
constitute the second stratum. The third and fourth strata were also selected to contain 250 and 200 units 
respectively. A sampling interval of 10 was used in each stratum resulting to 10 systematic samples in each 
stratum. In each stratum a sample was selected at random. In this case an assumption was made that systematic 
error hkb is proportional to the true value hk hkb dµ=  
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13. Results 
 

Table 2. Estimated population total subjected to systematic errors with proportions of size‘d’ 
 PARAMETER: POPULATION TOTAL AND POPULATION                  VARIANCE 

      
      

 
 

TRUE 
VALUES 

 
ESTIMATES WITH 

SYSTEMATIC ERROR 
 

d=0.05 d=0.10 d=0.15 d=0.20 d=0.25 d=0.30 
 
 
 
STRATUM 

     1 13320 14215 14881 15547 16213 16879 17545 
     2 13350 14030.5 14698 15365.5 16033 16700.5 17368 
     3 15050 16034.5 16787 17539.5 18292 19044.5 19797 
     4 13840 14369 15061 15723 16445 17137 17829 

Estimated pop Total 55560 58649 61427 64205 66983 69761 72539 
 population Total 55000 57865.3 60615.3 63365.3 66115.3 68865.3 71615.3 
Variance of 
estimator of 
population Total 

1343800 2462003 2620951 2786619 2959005 3138111 3323935 

Estimate of the 
Variance of pop 
Total 

99688.7 188425 199168 210410 222151 234390 247127 

 
 

 
Figure 1. Effects of systematic errors on variance of estimated population total 

 
 

14. Conclusion 
 

The table 2 and figure 1 indicated that there was an increase in population total and population variance 
with increase in systematic error. The findings of the study indicated that systematic errors had a significant 
impact on the accuracy of the estimates of both population total and population variance. 
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